
LPI exam 201 prep: Linux kernel
Intermediate Level Administration (LPIC-2) topic 201

Skill Level: Intermediate

David Mertz, Ph.D. (mertz@gnosis.cx)
Developer
Gnosis Software

29 Aug 2005

Updated 20 Sep 2005

In this tutorial, David Mertz begins preparing you to take the Linux Professional
Institute® Intermediate Level Administration (LPIC-2) Exam 201. In this first of eight
tutorials, you learn to understand, compile, and customize a Linux™ kernel.

Section 1. Before you start

Learn what these tutorials can teach you and how you can get the most from them.

About this series

The Linux Professional Institute (LPI) certifies Linux system administrators at junior
and intermediate levels. To attain each level of certification, you must pass two LPI
exams.

Each exam covers several topics, and each topic has a weight. The weights indicate
the relative importance of each topic. Very roughly, expect more questions on the
exam for topics with higher weight. The topics and their weights for LPI exam 201
are:

Topic 201
Linux kernel (weight 5). The focus of this tutorial.

Topic 202

Linux kernel
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 1 of 14

mailto:mertz@gnosis.cx
http://www.lpi.org
http://www.ibm.com/legal/copytrade.shtml

System startup (weight 5).

Topic 203
Filesystem (weight 10).

Topic 204
Hardware (weight 8).

Topic 209
File and service sharing (weight 8).

Topic 211
System maintenance (weight 4).

Topic 213
System customization and automation (weight 3).

Topic 214
Troubleshooting (weight 6).

The Linux Professional Institute does not endorse any third-party exam preparation
material or techniques in particular. For details, please contact info@lpi.org.

About this tutorial

Welcome to "Linux kernel," the first of eight tutorials designed to prepare you for LPI
exam 201. In this tutorial, you will learn how to compile and customize a Linux
kernel.

The tutorial is organized according to the LPI objectives for this topic, as follows:

2.201.1 Kernel components (weight 1)
You will learn how to use kernel components that are necessary to specific
hardware, hardware drivers, system resources, and requirements. You will
learn about implementing different types of kernel images, identifying stable
and development kernels and patches, as well as using kernel modules.

2.201.2 Compiling a kernel (weight 1)
You will learn how to properly compile a kernel to include or disable specific
features of the Linux kernel as necessary. You will learn about compiling and
recompiling the Linux kernel as needed, implementing updates and noting
changes in a new kernel, creating a system initrd image, and installing new
kernels.

2.201.3 Patching a kernel (weight 2)
You will learn how to properly patch a kernel for various purposes including
how to implement kernel updates, implement bug fixes, and add support for
new hardware. You will also learn how to properly remove kernel patches from
existing production kernels.

developerWorks® ibm.com/developerWorks

Linux kernel
Page 2 of 14 © Copyright IBM Corporation 1994, 2007. All rights reserved.

mailto:info@lpi.org
http://www.ibm.com/legal/copytrade.shtml

2.201.4 Customizing a kernel (weight 1)
You will learn how to customize a kernel for specific system requirements by
patching, compiling, and editing configuration files as required. You will learn
how to assess requirements for a kernel compile versus a kernel patch as well
as build and configure kernel modules.

This tutorial is one of the few in this series that is about Linux itself, strictly speaking.
That is, a variety of tools for networking, system maintenance, manipulating files and
data, and so on, are important for a working Linux installation and are part of almost
every Linux distribution. But the base kernel -- the bit of software that mediates
between contending programs and access to hardware -- is the software managed
by Linus Torvalds, and that is properly called "Linux itself."

One of the best things about the Linux kernel is that it is Free Software. Not only
have many brilliant people contributed to making the Linux kernel better, but you, as
system administrator, have access to the kernel source code. This gives you the
power to configure and customize the kernel to fit your exact requirements.

Prerequisites

To get the most from this tutorial, you should already have a basic knowledge of
Linux and a working Linux system on which you can practice the commands covered
in this tutorial.

Section 2. Kernel components

This section covers material for topic 2.201.1 for the Intermediate Level
Administration (LPIC-2) exam 201. The topic has a weight of 1.

What makes up a kernel?

A Linux kernel is made up of the base kernel itself plus any number of kernel
modules. In many or most cases, the base kernel and a large collection of kernel
modules are compiled at the same time and installed or distributed together, based
on the code created by Linus Torvalds or customized by Linux distributors. A base
kernel is always loaded during system boot and stays loaded during all uptime;
kernel modules may or may not be loaded initially (though generally some are), and
kernel modules may be loaded or unloaded during runtime.

The kernel module system allows the inclusion of extra modules that are compiled
after, or separately from, the base kernel. Extra modules may be created either
when you add hardware devices to a running Linux system or are sometimes
distributed by third parties. Third parties sometime distribute kernel modules in

ibm.com/developerWorks developerWorks®

Linux kernel
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 3 of 14

http://www.ibm.com/legal/copytrade.shtml

binary form, though doing so takes away your capability as a system administrator to
customize a kernel module. In any case, once a kernel module is loaded, it becomes
part of the running kernel for as long as it remains loaded. Contrary to some
conceptions, a kernel module is not simply an API for talking with a base kernel, but
becomes patched in as part of the running kernel itself.

Kernel naming conventions

Linux kernels follow a naming/numbering convention that quickly tells you significant
information about the kernel you are running. The convention used indicates a major
number, minor number, revision, and, in some cases, vendor/customization string.
This same convention applies to several types of files, including the kernel source
archive, patches, and perhaps multiple base kernels (if you run several).

As well as the basic dot-separated sequence, Linux kernels follow a convention to
distinguish stable from experimental branches. Stable branches use an even minor
number, whereas experimental branches use an odd minor number. Revisions are
simply sequential numbers that represent bug fixes and backward-compatible
improvements. Customization strings often describe a vendor or specific feature. For
example:

• linux-2.4.37-foo.tar.gz: Indicates a stable 2.4 kernel source
archive from the vendor "Foo Industries"

• /boot/bzImage-2.7.5-smp: Indicates a compiled experimental 2.7
base kernel with SMP support enabled

• patch-2.6.21.bz2: Indicates a patch to update an earlier 2.6 stable
kernel to revision 21

Kernel files

The Linux base kernel comes in two versions: zImage, which is limited to about 508
KB, and bzImage for larger kernels (up to about 2.5 MB). Generally, modern Linux
distributions use the bzImage kernel format to allow inclusion of more features. You
might expect that since the "z" in zImage indicates gzip compression, the "bz" in
bzImage might mean bzip2 compression is used there. However, the "b" simply
stands for "big" -- gzip compression is still used. In either case, as installed in the
/boot/ directory, the base kernel is often renamed as vmlinuz. Generally the file
/vmlinuz is a link to a version names file such as
/boot/vmlinuz-2.6.10-5-386.

There are a few other files in the /boot/ directory associated with a base kernel
that you should be aware of (sometimes you will find these at the file system root
instead). System.map is a table showing the addresses for kernel symbols.
initrd.img is sometimes used by the base kernel to create a simple file system in
a ramdisk prior to mounting the full file system.

developerWorks® ibm.com/developerWorks

Linux kernel
Page 4 of 14 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Kernel modules

Kernel modules contain extra kernel code that may be loaded after the base kernel.
Modules typically provide one of the following functions:

• Device drivers: Support a specific type of hardware

• File system drivers: Provide the optional capability to read and/or write a
particular file system

• System calls: Most are supported in the base kernel, but kernel modules
can add or modify system services

• Network drivers: Implement a particular network protocol

• Executable loaders: Parse and load additional executable formats

Section 3. Compiling a kernel

This section covers material for topic 2.201.2 for the Intermediate Level
Administration (LPIC-2) exam 201. The topic has a weight of 1.

Obtaining kernel sources

The first thing you need to do to compile a new Linux kernel is obtain the source
code for one. The main place to find kernel sources is from the Linux Kernel
Archives (kernel.org; see Resources for a link). The provider of your distribution
might also provide its own updated kernel sources that reflect vendor-specific
enhancements. For example, you might fetch and unpack a recent kernel version
with commands similar to these:

Listing 1. Fetching and unpacking kernel

% cd /tmp/src/
% wget http://www.kernel.org/pub/linux/kernel/v2.6/linux-2.6.12.tar.bz2
% cd /usr/src/
% tar jxvfy /tmp/src/linux-2.6.12.tar.bz2

You may need root permissions to unpack the sources under /usr/src/. However,
you are able to unpack or compile a kernel in a user directory. Check out kernel.org
for other archive formats and download protocols.

Checking your kernel sources

ibm.com/developerWorks developerWorks®

Linux kernel
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 5 of 14

http://www.ibm.com/legal/copytrade.shtml

If you have successfully obtained and unpacked a kernel source archive, your
system should contain a directory such as /usr/src/linux-2.6.12 (or a similar
leaf directory if you unpacked the archive elsewhere). Of particular importance, that
directory should contain a README file you might want to read for current
information. Underneath this directory are numerous subdirectories containing
source files, chiefly either .c or .h files. The main work of assembling these source
files into a working kernel is coded into the file Makefile, which is utilized by the
make utility.

Configuring the compilation

Once you have obtained and unpacked your kernel sources, you will want to
configure your target kernel. There are three flags to the make command that you
can use to configure kernel options. Technically, you can also manually edit the file
.config, but in practice doing so is rarely desirable (you forgo extra informational
context and can easily create an invalid configuration). The three flags are config,
menuconfig, and xconfig.

Of theses options, make config is almost as crude as manually editing the
.config file; it requires you configure every option (out of hundreds) in a fixed
order, with no backtracking. For text terminals, make menuconfig gives you an
attractive curses screen that you can navigate to set just the options you wish to
modify. The command make xconfig is similar for X11 interfaces but adds a bit
extra graphical eye candy (especially pretty with Linux 2.6+).

For many kernel options you have three choices: (1) include the capability in the
base kernel; (2) include it as a kernel module; (3) omit the capability entirely.
Generally, there is no harm (except a little extra compilation time) in creating
numerous kernel modules, since they are not loaded unless needed. For
space-constrained media, you might omit capabilities entirely.

Running the compilation

To actually build a kernel based on the options you have selected, you perform
several steps:

• make dep: Only necessary on 2.4, no longer on 2.6.

• make clean: Cleans up prior object files, a good idea especially if this is
not your first compilation of a given kernel tree.

• make bzImage: Builds the base kernel. In special circumstances you
might use make zImage for a small kernel image. You might also use
make zlilo to install the kernel directly within the lilo boot loader, or
make zdisk to create a bootable floppy. Generally, it is a better idea to
create the kernel image in a directory like
/usr/src/linux/arch/i386/boot/vmlinuz using make bzImage,
and manually copy from there.

developerWorks® ibm.com/developerWorks

Linux kernel
Page 6 of 14 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

• make modules: Builds all the loadable kernel modules you have
configured for the build.

• sudo make modules_install: Installs all the built modules to a
directory such as /lib/modules/2.6.12/, where the directory leaf is
named after the kernel version.

Creating an initial ramdisk

If you built important boot drivers as modules, an initial ramdisk is a way of
bootstrapping the need for their capabilities during the initial boot process. The
especially applies to file system drivers that are compiled as kernel modules.
Basically, an initial ramdisk is a magic root pseudo-partition that lives only in memory
and is later chrooted to the real disk partition (for example, if your root partition is
on RAID). Later tutorials in this series will cover this in more detail.

Creating an initial ramdisk image is performed with the command mkinitrd.
Consult the manpage on your specific Linux distribution for the particular options
given to the mkinitrd command. In the simplest case, you might run something
like this:

Listing 2. Creating a ramdisk

% mkinitrd /boot/initrd-2.6.12 2.6.12

Installing the compiled Linux kernel

Once you have successfully compiled the base kernel and its associated modules
(this might take a while -- maybe hours on a slow machine), you should copy the
kernel image (vmlinuz or bzImage) and the System.map file to your /boot/
directory.

Once you have copied the necessary kernel files to /boot/, and installed the kernel
modules using make modules_install, you need to configure your boot loader --
typically lilo or grub to access the appropriate kernel(s). The next tutorial in this
series provides information on configuring lilo and grub.

Further information

The kernel.org site contains a number of useful links to more information about
kernel features and requirements for compilation. A particularly useful and detailed
document is Kwan Lowe's Kernel Rebuild Guide. You'll find links to both in the
Resources section.

ibm.com/developerWorks developerWorks®

Linux kernel
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 7 of 14

http://www.ibm.com/legal/copytrade.shtml

Section 4. Patching a kernel

This section covers material for topic 2.201.3 for the Intermediate Level
Administration (LPIC-2) exam 201. The topic has a weight of 2.

Obtaining a patch

Linux kernel sources are distributed as main source trees combined with much
smaller patches. Generally, doing it this way allows you to obtain a "bleeding edge"
kernel with much quicker downloads. This arrangement lets you apply
special-purpose patches from sources other than kernel.org.

If you wish to patch several levels of changes, you will need to obtain each
incremental patch. For example, suppose that by the time you read this, a Linux
2.6.14 kernel is available, and you had downloaded the 2.6.12 kernel in the prior
section. You might run:

Listing 3. Getting incremental patches

% wget http://www.kernel.org/pub/linux/kernel/v2.6/patch-2.6.13.bz2
% wget http://www.kernel.org/pub/linux/kernel/v2.6/patch-2.6.14.bz2

Unpacking and applying patches

To apply patches, you must first unpack them using bzip2 or gzip, depending on
the compression archive format you downloaded, then apply each patch. For
example:

Listing 4. Unzipping and applying patches

% bzip2 -d patch2.6.13.bz2
% bzip2 -d patch2.6.14.bz2
% cd /usr/src/linux-2.6.12
% patch -p1 < /path/to/patch2.6.13
% patch -p1 < /path/to/patch2.6.14

Once patches are applied, proceed with compilation as described in the prior
section. make clean will remove extra object files that may not reflect the new
changes.

Section 5. Customizing a kernel

developerWorks® ibm.com/developerWorks

Linux kernel
Page 8 of 14 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

This section covers material for topic 2.201.4 for the Intermediate Level
Administration (LPIC-2) exam 201. The topic has a weight of 1.

About customization

Much of what you would think of as customizing a kernel was discussed in the
section of this tutorial on compiling a kernel (specifically, the make
[x|menu]config options). When compiling a base kernel and kernel modules, you
may include or omit many kernel capabilities in order to achieve specific capabilities,
run profiles, and memory usage.

This section looks at ways you can modify kernel behavior at runtime.

Finding information about a running kernel

Linux (and other UNIX-like operating systems) uses a special, generally consistent,
and elegant technique to store information about a running kernel (or other running
processes). The special directory /proc/ contains pseudo-files and subdirectories
with a wealth of information about the running system.

Each process that is created during the uptime of a Linux system creates its own
numeric subdirectory with several status files. Much of this information is
summarized by userlevel commands and system tools, but the underlying
information resides in the /proc/ file system.

Of particular note for understanding the status of the kernel itself are the contents of
/proc/sys/kernel.

More about current processes

While the status of processes, especially userland processes, does not pertain to the
kernel per se, it is important to understand these if you intend to tweak an underlying
kernel. The easiest way to obtain a summary of processes is with the ps command
(graphical and higher level tools also exist). With a process ID in mind, you can
explore the running process. For example:

Listing 5. Exploring the running process

% ps
PID TTY TIME CMD

16961 pts/2 00:00:00 bash
17239 pts/2 00:00:00 ps
% ls /proc/16961
binfmt cwd@ exe@ maps mounts stat status
cmdline environ fd/ mem root@ statm

This tutorial cannot address all the information contained in those process

ibm.com/developerWorks developerWorks®

Linux kernel
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 9 of 14

http://www.ibm.com/legal/copytrade.shtml

pseudo-files, but just as an example, let's look at part of status:

Listing 6. A look at the status pseudo-file

$ head -12 /proc/17268/status
Name: bash
State: S (sleeping)
Tgid: 17268
Pid: 17268
PPid: 17266
TracerPid: 0
Uid: 0 0 0 0
Gid: 0 0 0 0
FDSize: 256
Groups: 0
VmSize: 2640 kB
VmLck: 0 kB

The kernel process

As with user processes, the /proc/ file system contains useful information about a
running kernel. Of particular significance is the directory /proc/sys/kernel/:

Listing 7. /proc/sys/kernel/ directory

% ls /proc/sys/kernel/
acct domainname msgmni printk shmall threads-max
cad_pid hostname osrelease random/ shmmax version
cap-bound hotplug ostype real-root-dev shmmni
core_pattern modprobe overflowgid rtsig-max swsusp
core_uses_pid msgmax overflowuid rtsig-nr sysrq
ctrl-alt-del msgmnb panic sem tainted

The contents of these pseudo-files show information on the running kernel. For
example:

Listing 8. A look at the ostype pseudo-file

% cat /proc/sys/kernel/ostype
Linux
% cat /proc/sys/kernel/threads-max
4095

Already loaded kernel modules

As with other aspects of a running Linux system, information on loaded kernel
modules lives in the /proc/ file system, specifically in /proc/modules. Generally,
however, you will access this information using the lsmod utility (which simply puts
a header on the display of the raw contents of /proc/modules); cat
/proc/modules displays the same information. Let's look at an example:

Listing 9. Contents of /proc/modules

developerWorks® ibm.com/developerWorks

Linux kernel
Page 10 of 14 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

% lsmod
Module Size Used by Not tainted
lp 8096 0
parport_pc 25096 1
parport 34176 1 [lp parport_pc]
sg 34636 0 (autoclean) (unused)
st 29488 0 (autoclean) (unused)
sr_mod 16920 0 (autoclean) (unused)
sd_mod 13100 0 (autoclean) (unused)
scsi_mod 103284 4 (autoclean) [sg st sr_mod sd_mod]
ide-cd 33856 0 (autoclean)
cdrom 31648 0 (autoclean) [sr_mod ide-cd]
nfsd 74256 8 (autoclean)
af_packet 14952 1 (autoclean)
ip_vs 83192 0 (autoclean)
floppy 55132 0
8139too 17160 1 (autoclean)
mii 3832 0 (autoclean) [8139too]
supermount 15296 2 (autoclean)
usb-uhci 24652 0 (unused)
usbcore 72992 1 [usb-uhci]
rtc 8060 0 (autoclean)
ext3 59916 2
jbd 38972 2 [ext3]

Loading additional kernel modules

There are two tools for loading kernel modules. The command modprobe is slightly
higher level, and handles loading dependencies -- that is, other kernel modules a
loaded kernel module may need. At heart, however, modprobe is just a wrapper for
calling insmod.

For example, suppose you want to load support for the Reiser file system into the
kernel (assuming it is not already compiled into the kernel). You can use the
modprobe -nv option to just see what the command would do, but not actually load
anything:

Listing 10. Checking dependencies with modprobe

% modprobe -nv reiserfs
/sbin/insmod /lib/modules/2.4.21-0.13mdk/kernel/fs/reiserfs/reiserfs.o.gz

In this case, there are no dependencies. In other cases, dependencies might exist
(which would be handled by modprobe if run without -n). For example:

Listing 11. More modprobe

% modprobe -nv snd-emux-synth
/sbin/insmod /lib/modules/2.4.21-0.13mdk/kernel/drivers/sound/

soundcore.o.gz
/sbin/insmod /lib/modules/2.4.21-0.13mdk/kernel/sound/core/

snd.o.gz
/sbin/insmod /lib/modules/2.4.21-0.13mdk/kernel/sound/synth/

snd-util-mem.o.gz
/sbin/insmod /lib/modules/2.4.21-0.13mdk/kernel/sound/core/seq/

snd-seq-device.o.gz
/sbin/insmod /lib/modules/2.4.21-0.13mdk/kernel/sound/core/

ibm.com/developerWorks developerWorks®

Linux kernel
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 11 of 14

http://www.ibm.com/legal/copytrade.shtml

snd-timer.o.gz
/sbin/insmod /lib/modules/2.4.21-0.13mdk/kernel/sound/core/seq/

snd-seq.o.gz
/sbin/insmod /lib/modules/2.4.21-0.13mdk/kernel/sound/core/seq/

snd-seq-midi-event.o.gz
/sbin/insmod /lib/modules/2.4.21-0.13mdk/kernel/sound/core/

snd-rawmidi.o.gz
/sbin/insmod /lib/modules/2.4.21-0.13mdk/kernel/sound/core/seq/

snd-seq-virmidi.o.gz
/sbin/insmod /lib/modules/2.4.21-0.13mdk/kernel/sound/core/seq/

snd-seq-midi-emul.o.gz
/sbin/insmod /lib/modules/2.4.21-0.13mdk/kernel/sound/synth/emux/

snd-emux-synth.o.gz

Suppose you want to load a kernel module now. You can use modprobe to load all
dependencies along the way, but to be explicit you should use insmod.

From the information given above, you might think to run, for example, insmod
snd-emux-synth. But if you do that without first loading the dependencies, you will
receive complaints about "unresolved symbols." So let's try Reiser file system
instead, which stands alone:

Listing 12. Loading a kernel module

% insmod reiserfs
Using /lib/modules/2.4.21-0.13mdk/kernel/fs/reiserfs/reiserfs.o.gz

Happily enough, your kernel will now support a new file system. You can mount a
partition, read/write to it, and so on. For other system capabilities, the concept would
be the same.

Removing loaded kernel modules

As with loading modules, unloading them can either be done at a higher level with
modprobe or at a lower level with rmmod. The higher level tool unloads everything
in reverse dependency order. rmmod just removes a single kernel module, but will
fail if modules are in use (usually because of dependencies). For example:

Listing 13. Trying to unload modules with dependencies in use

% modprobe snd-emux-synth
% rmmod soundcore
soundcore: Device or resource busy
% modprobe -rv snd-emux-synth
delete snd-emux-synth
delete snd-seq-midi-emul
delete snd-seq-virmidi
delete snd-rawmidi
delete snd-seq-midi-event
delete snd-seq
delete snd-timer
delete snd-seq-device
delete snd-util-mem
delete snd
delete soundcore

developerWorks® ibm.com/developerWorks

Linux kernel
Page 12 of 14 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

However, if a kernel module is eligible for removal, rmmod will unload it from
memory, for example:

Listing 14. Unloading modules with no dependencies

% rmmod -v reiserfs
Checking reiserfs for persistent data

Automatically loading kernel modules

You can cause kernel modules to be loaded automatically, if you wish, using either
the kernel module loader in recent Linux versions, or the kerneld daemon in older
version. If you use these techniques, the kernel will detect the fact it does not
support a particular system call, then attempt to load the appropriate kernel module.

However, unless you run in very memory-constrained systems, there is usually no
reason not to simply load needed kernel modules during system startup (see the
next tutorial in this series for more information). Some distributions may ship with the
kernel module loader enabled.

Autocleaning kernel modules

As with automatic loading, autocleaning kernel modules is mostly only an issue for
memory-constrained systems, such as embedded Linux systems. However, you
should be aware that kernel modules may be loaded with the insmod
--autoclean flag, which marks them as unloadable if they are not currently used.

The older kerneld daemon would make a call to rmmod --all periodically to
remove unused kernel modules. In special circumstances (if you are not using
kerneld, which you will not on recent Linux systems), you might add the command
rmmod --all to your crontab, perhaps running once a minute or so. But mostly,
this whole issue is superfluous, since kernel modules generally use much less
memory than typical user processes do.

ibm.com/developerWorks developerWorks®

Linux kernel
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 13 of 14

http://www.ibm.com/legal/copytrade.shtml

Resources

Learn

• At the LPIC Program, find task lists, sample questions, and detailed objectives
for the three levels of the Linux Professional Institute's Linux system
administration certification.

• Read Kwan Lowe's Kernel Rebuild Guide for more details on building a kernel.

• Find more resources for Linux developers in the developerWorks Linux zone.

Get products and technologies

• Get the Linux kernel source at kernel.org, the Linux Kernel Archives.

• Order the SEK for Linux, a two-DVD set containing the latest IBM trial software
for Linux from DB2®, Lotus®, Rational®, Tivoli®, and WebSphere®.

• Build your next development project on Linux with IBM trial software, available
for download directly from developerWorks.

Discuss

• Participate in the discussion forum for this content.

• KernelNewbies.org has lots of resources for people who are new to the kernel:
an FAQ, an IRC channel, a mailing list, and a wiki.

• KernelTrap is a Web community devoted to sharing the latest in kernel
development news.

• At Kernel Traffic you can find a newsletter that covers some of the discussion
on the Linux kernel mailing list.

• Get involved in the developerWorks community by participating in
developerWorks blogs.

About the author

David Mertz, Ph.D.
David Mertz is Turing complete, but probably would not pass the Turing Test. For
more on his life, see his personal Web page. He's been writing the developerWorks
columns Charming Python and XML Matters since 2000. Check out his book Text
Processing in Python .

developerWorks® ibm.com/developerWorks

Linux kernel
Page 14 of 14 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.lpi.org/en/lpic.html
http://www.digitalhermit.com/linux/Kernel-Build-HOWTO.html
http://www.ibm.com/developerworks/linux/
http://www.kernel.org/
http://www.ibm.com/developerworks/offers/sek/?S_TACT=105AGX03
http://www.ibm.com/developerworks/downloads/?S_TACT=105AGX03
http://www.ibm.com/developerworks/forums/dw_forum.jsp?forum=160&cat=5
http://www.kernelnewbies.org/
http://kerneltrap.org/
http://www.kerneltraffic.org/kernel-traffic/index.html
http://www.ibm.com/developerworks/blogs/
http://gnosis.cx/dW/
http://gnosis.cx/TPiP/
http://gnosis.cx/TPiP/
http://www.ibm.com/legal/copytrade.shtml

	Table of Contents
	Before you start
	About this series
	About this tutorial
	Prerequisites

	Kernel components
	What makes up a kernel?
	Kernel naming conventions
	Kernel files
	Kernel modules

	Compiling a kernel
	Obtaining kernel sources
	Checking your kernel sources
	Configuring the compilation
	Running the compilation
	Creating an initial ramdisk
	Installing the compiled Linux kernel
	Further information

	Patching a kernel
	Obtaining a patch
	Unpacking and applying patches

	Customizing a kernel
	About customization
	Finding information about a running kernel
	More about current processes
	The kernel process
	Already loaded kernel modules
	Loading additional kernel modules
	Removing loaded kernel modules
	Automatically loading kernel modules
	Autocleaning kernel modules

	Resources
	About the author

