
LPI exam 201 prep: File and service sharing
Intermediate Level Administration (LPIC-2) topic 209

Skill Level: Intermediate

Brad Huntting (huntting@glarp.com)
Mathematician
University of Colorado

David Mertz, Ph.D. (mertz@gnosis.cx)
Developer
Gnosis Software

02 Sep 2005

In this tutorial, Brad Huntting and David Mertz continue preparing you to take the
Linux Professional Institute® Intermediate Level Administration (LPIC-2) Exam 201.
In this fifth of eight tutorials, you learn how to use a Linux™ system as a networked
file server using any of several protocols supported by Linux.

Section 1. Before you start

Learn what these tutorials can teach you and how you can get the most from them.

About this series

The Linux Professional Institute (LPI) certifies Linux system administrators at junior
and intermediate levels. To attain each level of certification, you must pass two LPI
exams.

Each exam covers several topics, and each topic has a weight. The weights indicate
the relative importance of each topic. Very roughly, expect more questions on the
exam for topics with higher weight. The topics and their weights for LPI exam 201
are:

Topic 201

File and service sharing
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 1 of 12

mailto:huntting@glarp.com
mailto:mertz@gnosis.cx
http://www.lpi.org
http://www.ibm.com/legal/copytrade.shtml

Linux kernel (weight 5).

Topic 202
System startup (weight 5).

Topic 203
Filesystems (weight 10).

Topic 204
Hardware (weight 8).

Topic 209
File and service sharing (weight 8). The focus of this tutorial.

Topic 211
System maintenance (weight 4).

Topic 213
System customization and automation (weight 3).

Topic 214
Troubleshooting (weight 6).

The Linux Professional Institute does not endorse any third-party exam preparation
material or techniques in particular. For details, please contact info@lpi.org.

About this tutorial

Welcome to "File and service sharing," the fifth of eight tutorials designed to prepare
you for LPI exam 201. In this tutorial, you learn how to use a Linux system as a
networked file server using any of several protocols supported by Linux.

The tutorial is organized according to the LPI objectives for this topic, as follows:

2.209.1 Configuring a Samba server (weight 5)
You will be able to set up a Samba server for various clients. This objective
includes setting up a login script for Samba clients and setting up an nmbd
WINS server. Also included is changing the workgroup in which a server
participates, defining a shared directory in smb.conf, defining a shared printer
in smb.conf, using nmblookup to test WINS server functionality, and using the
smbmount command to mount an SMB share on a Linux client.

2.209.2 Configuring an NFS server (weight 3)
You will be able to create an exports file and specify filesystems to be
exported. This objective includes editing exports file entries to restrict access to
certain hosts, subnets, or netgroups. Also included is specifying mount options
in the exports file, configuring user ID mapping, mounting an NFS filesystem on
a client, and using mount options to specify soft or hard and background
retries, signal handling, locking, and block size. You should also be able to

developerWorks® ibm.com/developerWorks

File and service sharing
Page 2 of 12 © Copyright IBM Corporation 1994, 2007. All rights reserved.

mailto:info@lpi.org
http://www.ibm.com/legal/copytrade.shtml

configure tcpwrappers to further secure NFS.

The current LPI exam objectives for topic 209 exam cover NFS and Samba. But if
you are a system administrator designing a server configuration, you should also
consider whether FTP, SCP/SSH, HTTP, or other protocols might, in fact, meet your
requirements.

One of the most significant uses for Linux, particularly in a server context, is to
provide shared files to client systems. In fact, in a general way, serving files is
probably most of what all networking is used for. This tutorial -- and in fact, this
series of tutorials -- will not address peer-to-peer file-sharing servers such as
BitTorrent. Rather, this tutorial looks only at older client-server arrangements: A
central server that provides disk stores for multiple clients. Even when clients upload
files, those are always stored and served by the server, rather than in a
decentralized fashion.

Protocols widely used for file serving include HTTP (the WWW), TFTP (Trivial File
Transfer Protocol), FTP (File Transfer Protocol), SCP (Secure Copy Protocol, a
specialized use of SSH), RCP (Remote Copy Protocol, generally deprecated), NFS
(Network File System), and Samba (server message block). HTTP and SSH will be
discussed in upcoming tutorials for LPI exam 202, as will security issues around
FTP. TFTP and RCP are special purpose or deprecated and will not be addressed in
these tutorials.

This tutorial looks at NFS and Samba in some detail and briefly describes FTP. NFS
and Samba are network file-sharing protocols that allow mostly transparent access
to remote filesystems. FTP might require a custom FTP client program, although
many desktop environments or tools (on Linux or otherwise) hide the details of this
negotiation and effectively present the same user interface as an NFS- or
Samba-mounted drive.

Prerequisites

To get the most from this tutorial, you should already have a basic knowledge of
Linux and a working Linux system on which you can practice the commands covered
in this tutorial.

Section 2. Configuring an NFS server

Using NFS on a client

If the server is properly configured and the client has appropriate permissions,
mounting a remote filesystem with NFS requires only the mount command:

ibm.com/developerWorks developerWorks®

File and service sharing
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 3 of 12

http://www.ibm.com/legal/copytrade.shtml

mount -t nfs my.nfs.server.com:/path/on/server /path/on/client

or a suitable entry in /etc/fstab:

my.nfs.server.com:/path/on/server /path/on/client nfs rw,soft
0 0

The soft option tells the kernel to send an I/O error (EIO) to user processes in the
event of network difficulties. The default hard option will cause processes to hang
while the NFS server is unreachable.

In addition, the helper programs rpc.lockd, rpc.statd, and rpc.quotad may
be run on client and/or server.

Configuring an NFS server (part one)

An NFS server requires three distinct programs, as well as three optional programs.

When an NFS client mounts an NFS filesystem, it contacts the following server
daemons, most of which must run standalone (as opposed to being started from
inetd):

• portmap: Sometimes named portmapper or rpc.bind.

• rpc.mountd: Sometimes mounted.

• rpc.nfsd: Sometimes nfsd.

In addition, there are three optional helper programs: rpc.lockd, rpc.statd, and
rpc.quotad which, respectively, provide global locking, accelerate the lstat
family of syscalls (used by ls -l, etc.), and provide support for quotas.

Configuring an NFS server (part two)

All three NFS-related servers use TCPwrappers (tcpd) for access controland
therefore may require entries in /etc/host.allow.

Neither nfsd nor portmap normally require any configuration beyond
/etc/hosts.allow.

The configuration file for mountd is (indirectly) /etc/exports. It says which filesystems
can be mounted by which clients. Under the Linux implementation of NFS,
/etc/exports is not directly parsed by mountd. Instead, the exportfs -a command
parses /etc/exports and writes the result to /var/lib/nfs/xtab where mountd can read
it. There are other flags to exportfs which allow these two files to be
desynchronized. That is, you may temporarily add or remove exported directories
without modifying the semi-permanent records in /etc/exports.

Administrators of other Unix-like servers should note that the syntax of the Linux

developerWorks® ibm.com/developerWorks

File and service sharing
Page 4 of 12 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

/etc/exports file differs significantly from that of SunOS or BSD.

Configuring /etc/hosts.allow and /etc/hosts.deny

The configuration file /etc/hosts.allow describes hosts that are allowed to connect to
a Linux system. This configuration is not specific to NFS, but a system needs to be
permitted to connect in the first place to use and NFS server. Similarly,
/etc/hosts.deny is a list of hosts prohibited from connecting.

Slightly unintuitively, first allowed hosts are searched, then denied hosts, but
anything left unmatched is granted access. This does not mean that the login
mechanisms of individual servers are not still operative, but a cautious administrator
might deny anything not explicitly permitted (a little paranoia is good) by using:

/etc/hosts.deny
ALL:ALL EXCEPT localhost:DENY

With an /etc/hosts.deny set to deny everything (except connections from
LOCALHOST), only those connections explicitly permitted will be allowed. For
example:

#/etc/hosts.allow
Allow localhost and intra-net domain to use all servers
ALL : 127.0.0.1, 192.168.
Let everyone ssh here except 216.73.92.* and .microsoft.com
sshd: ALL EXCEPT 216.73.92. .microsoft.com : ALLOW
Let users in the *.example.net domain ftp in
ftpd: .example.net

Configuring /etc/exports

Here's a sample /etc/export file:

sample /etc/exports file / master(rw)
trusty(rw,no_root_squash) /projects proj*.local.domain(rw)
/usr *.local.domain(ro) @trusted(rw) /home/joe
pc001(rw,all_squash,anonuid=150,anongid=100) /pub
(ro,insecure,all_squash)
Normally, root (uid 0) on the client is treated as nobody (uid 65534) on the server;
this is called root squashing since it protects files owned by root (and not group/other
writable) from being altered by NFS clients. The no_root_squash tag disables this
behavior and allows the root user on trusty full access to the / partition. This can
be useful for installing and configuring software.

The /usr partition will be read only for all hosts except those in the "trusted"
netgroup.

When /home/joe is mounted by pc001, all remote users (regardless of uid/gid) will

ibm.com/developerWorks developerWorks®

File and service sharing
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 5 of 12

http://www.ibm.com/legal/copytrade.shtml

be treated as if they have uid=150, gid=100. This is useful if the remote NFS client is
a single-user workstation or does not support different users (like with DOS).

Normally, Linux (and other Unix-like operating systems) reserves the use of TCP
and UDP ports 1-1023 (so called secure ports) for use by processes running as root.
To ensure that the root user has initiated a remote NFS mount, the NFS server
normally requires remote clients to use secure ports when mounting NFS
filesystems. This convention, however, is not honored by some operating systems
(notably Windows). In such cases, the insecure option allows the NFS client to use
any TCP/UDP port. This is usually required when serving Windows clients.

NFS utilities

nfsstat displays a time series of NFS-related statistics (client and/or server)
regarding the local machine similar to iostat and vmstat.

The showmount command queries mountd and shows which clients are currently
mounting filesystems. As NFS is a stateless protocol and the mountd daemon is
queried infrequently, the output of showmount can become inaccurate.
Unfortunately, there is not really any way to force showmount to become accurate.
However, where it is inaccurate, showmount almost always errs in showing stale
mounts rather than omitting active mounts (relatively harmlessly).

In this context, "stateless" means that the nfsd daemons that serve up the actual
file data have no memory of which files are open, nor even which clients have which
partitions mounted. Each request (readblock, writeblock, etc.) contains all the
information needed to complete it (partition id provided by mountd, inode number,
block number, read/write/etc., data). The HTTP protocol is similar in this respect. An
upside of statelessness if the server reboots, the clients will notice only a brief period
of interrupted access.

Section 3. Configuring a samba server

Samba server configuration

The Samba server smbd provides file and print services (largely for Windows
clients). While it can be started from inetd, it is typically run as a stand alone
daemon smbd -D. nmbd is the NetBios nameserver (or WINS server). It too can be
run from inetd, but is more typically run as a stand alone daemon nmbd -D.
Samba can function as a server in a Windows WORKGROUP, as well as Primary
Domain Controller.

The configuration file for both smbd and nmbd is /etc/samba/smb.conf. Copious

developerWorks® ibm.com/developerWorks

File and service sharing
Page 6 of 12 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

configuration parameters are described in the smb.conf manpage. The lmhosts file is
used to map NetBios names to IP addresses. Its format is similar to (but not identical
to) the /etc/hosts file.

There are several excellent HOWTOs on the subject of Samba configuration as well
as several books. This section touches on the basic ideas with pointers to more
complete documentation.

Setting up a home-directory file share

The following smb.conf snippet allows users to access their (local) home directories
from remote Samba clients:

[homes]
comment = Home Directories
browseable = no

This is usually included in the default smb.conf file.

Setting up a print share with CUPS

Of the numerous Unix printing systems, CUPS is the least antiquated and probably
the currently most popular. Depending on your distribution, CUPS may be enabled in
the default smb.conf. Here is a simple example of a CUPS print share:

[global]
load printers = yes
printing = cups
printcap name = cups

[printers]
comment = All Printers
path = /var/spool/samba
browseable = no
public = yes
guest ok = yes
writable = no
printable = yes
printer admin = root

[print$]
comment = Printer Drivers
path = /etc/samba/drivers
browseable = yes
guest ok = no
read only = yes
write list = root

CUPS can provide ppd (Postscript printer description) files and Windows drivers for
clients which, when setup properly, allows remote users to take advantage of the full
range of a printer's features (color versus black-and-white, resolution, paper-tray
select, double- vs. single-sided printing, etc.). Traditional Unix printing systems are
quite cumbersome by comparison. Consult the cupsaddsmb manpage for more

ibm.com/developerWorks developerWorks®

File and service sharing
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 7 of 12

http://www.ibm.com/legal/copytrade.shtml

information.

Authentication

Samba (unlike NFS) requires individual users to authenticate with the server. As with
any network-authentication service, care should be taken to insure that passwords
are never passed over the network unencrypted. See the section on encrypting
passwords in the smb.conf manpage for details.

There are a variety of mechanisms Samba can use to authenticate remote users
(clients). By their nature most of these are incompatible with the standard Unix
password hash. The notable exception is when passwords are passed over the wire
in the clear, unencrypted, which is almost always a bad idea.

Assuming you encrypt passwords on the wire, smbpasswd will usually be used to
set up users with an initial Samba password. The "Unix password sync" option
allows smbpasswd to change Unix passwords whenever users change their Samba
password.

Alternatively, the pam_smb module, when configured, can authenticate Linux users
using the Samba database directly. As if that's not enough choices, LDAP can be
used to authenticate Samba and/or Linux users.

Debugging Samba

When configuring a Samba server, the testparm (also called smbtestparm)
command can be quite useful. It will parse the smb.conf file and report any
problems.

The nmblookup command does for Samba what nslookup does for DNS; it
queries the NetBios directory. See the nmblookup manpage for more details.

Samba client configuration

The smbclient command provides FTP-like access to a Samba file share.
Transparent access to SMB file shares is trickier; see the smbmount manpage or
the sharit' package for more info.

Section 4. Configuring File Transfer Protocol servers

About FTP

developerWorks® ibm.com/developerWorks

File and service sharing
Page 8 of 12 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

FTP is an old and widely used network protocol. FTP is normally run over two
separate ports, 20 and 21. Port 21 is used as a control stream (transmitting login
information and commands) while port 20 is used as the data stream over which
actual file content is transmitted.

Generally, FTP is not considered a very secure protocol in the sense that in its
default mode of operation, control information -- login passwords -- are transmitted in
the clear. For that matter, data streams are also unencrypted, but FTP shares that
feature with NFS and Samba (for secure data channels, SSH/SCP is a better
choice). It is possible to layer FTP's control port over SSH, hence protecting control
information.

Traditional FTP clients provide their own shell environment over which to transmit
control commands and configure connections. Sometimes GUI frontends are used to
provide friendlier interfaces to FTP transfers. However these days, many
non-dedicated tools incorporate FTP -- everything from file managers to text editors
are often happy to work with files served by an FTP server.

Anonymous FTP

For what FTP is most often used for, security is not usually an issue. Probably most
often, FTP servers are used for "anonymous FTP" -- that is, data that is available to
the world at large and therefore doesn't require much security. By convention, a
username of anonymous is configured to allow access and an identifying password
(often an email address) is requested but not verified. Sometimes a
username/password is required, but such a combination is provided without any
deep user authentication (for instance, with people who want to volunteer for a
project).

Most Web browsers and many file managers and tools support FTP servers
transparently. Often these tools will use an FTP URL to request a file (or also to
upload a file to a server). For example, the command-line tool wget will retreive files
from FTP servers using the following:

$ wget ftp://example.net/pub/somefile
$ wget ftp://user:passwd@example.net/pub/somefile

File managers will often mount an FTP server in a manner that is essentially
identical to a local filesystem or NFS or Samba drive (this does not, however, use
the mount and /etc/fstab system; such pseudo-partitions are usually named by their
URL).

Choices of FTP servers

Given the age and ubiquity of FTP, a bewildering number of implementations are
available and installed with various Linux distributions. Configuring the FTP server
you decide to use will require a visit to the documentation accompanying the

ibm.com/developerWorks developerWorks®

File and service sharing
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 9 of 12

http://www.ibm.com/legal/copytrade.shtml

particular server.

Some popular Linux FTP servers include

• wu-ftpd.

• vsftpd.

• ProFTPd.

• BSD ftpd.

• TUX FTP.

There are many less used ones as well. In most every case, the configuration of a
server will live in a file like /etc/FOOftpd.conf (for an appropriate value of "FOO"). I
am fond of vsftpd which is both fast and avoids known security glitches (the "vs"
stands for "very secure").

A sample FTPd configuration file

Given the wealth of servers, configuration syntaxes will differ. But a few concepts
taken from /etc/vsftpd.conf illustrate the types of options other servers provide. For
vsftpd, each option takes the form option=value with the usual hash marks for
comment lines. Most other FTPd configuration files are similar.

• anonymous_enable: Controls whether anonymous logins are permitted.

• anon_world_readable_only: When enabled, anonymous users will
only be allowed to download world-readable files.

• chroot_local_user: If enabled, local users will be placed in a
chroot() jail in their home directory after login.

• pasv_enable: Should the server use the "passive FTP" style in which
clients initiate ports (helps with firewalls at clients).

• ssl_enable: If enabled, vsftpd will support SSL secure connections.

• tcp_wrappers: If enabled incoming connections will be fed through
access control (like /etc/hosts.allow and /etc/hosts.deny).

Launching an FTP server

In the simplest case, you may start an FTP server the same way you might launch
any daemon:

% sudo vsftpd

At this point the server will listen for incoming connections according the rules

developerWorks® ibm.com/developerWorks

File and service sharing
Page 10 of 12 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

configured in its configuration file. You may also launch an FTP server from an
"network super-server" such as inetd or xinetd. The LPI 202 tutorials will discuss
these super-servers.

Launching a daemon individually, even if in appropriate startup scripts -- either for a
particular runlevel or in /etc/rcS.d/ -- gives you finer control over the behavior of an
FTP server.

ibm.com/developerWorks developerWorks®

File and service sharing
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 11 of 12

http://www.ibm.com/legal/copytrade.shtml

Resources

Learn

• At the LPIC Program, find task lists, sample questions, and detailed objectives
for the three levels of the Linux Professional Institute's Linux system
administration certification.

• "Introduction to Samba" (developerWorks, June 2000) is a two-part series that
shows how to set up and configure a Samba server.

• Samba Installation, Configuration, and Sizing Guide (IBM Redbook, May 2003)
gives you the basics of installing and configuring Samba.

• "Using Network File System" (developerWorks, February 2005) is a primer on
using NFS.

• Find more resources for Linux developers in the developerWorks Linux zone.

Get products and technologies

• Order the SEK for Linux, a two-DVD set containing the latest IBM trial software
for Linux from DB2®, Lotus®, Rational®, Tivoli®, and WebSphere®.

• Build your next development project on Linux with IBM trial software, available
for download directly from developerWorks.

Discuss

• Participate in the discussion forum for this content.

• Get involved in the developerWorks community by participating in
developerWorks blogs.

About the authors

Brad Huntting
Brad has been doing UNIX® systems administration and network engineering for
about 14 years at several companies. He is currently working on a Ph.D. in Applied
Mathematics at the University of Colorado in Boulder, and pays the bills by doing
UNIX support for the Computer Science department.

David Mertz, Ph.D.
David Mertz is Turing complete, but probably would not pass the Turing Test. For
more on his life, see his personal Web page. He's been writing the developerWorks
columns Charming Python and XML Matters since 2000. Check out his book Text
Processing in Python .

developerWorks® ibm.com/developerWorks

File and service sharing
Page 12 of 12 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.lpi.org/en/lpic.html
http://www.ibm.com/developerworks/linux/library/l-sambaint/
http://www.redbooks.ibm.com/abstracts/SG246004.html?Open
http://www.ibm.com/developerworks/eserver/articles/net_file.html
http://www.ibm.com/developerworks/linux/
http://www.ibm.com/developerworks/offers/sek/?S_TACT=105AGX03
http://www.ibm.com/developerworks/downloads/?S_TACT=105AGX03
http://www.ibm.com/developerworks/forums/dw_forum.jsp?forum=160&cat=5
http://www.ibm.com/developerworks/blogs/
http://gnosis.cx/dW/
http://gnosis.cx/TPiP/
http://gnosis.cx/TPiP/
http://www.ibm.com/legal/copytrade.shtml

	Table of Contents
	Before you start
	About this series
	About this tutorial
	Prerequisites

	Configuring an NFS server
	Using NFS on a client
	Configuring an NFS server (part one)
	Configuring an NFS server (part two)
	Configuring /etc/hosts.allow and /etc/hosts.deny
	Configuring /etc/exports
	NFS utilities

	Configuring a samba server
	Samba server configuration
	Setting up a home-directory file share
	Setting up a print share with CUPS
	Authentication
	Debugging Samba
	Samba client configuration

	Configuring File Transfer Protocol servers
	About FTP
	Anonymous FTP
	Choices of FTP servers
	A sample FTPd configuration file
	Launching an FTP server

	Resources
	About the authors

