Filesystem
Intermediate Level Administration (LPIC-2) topic 203

Skill Level: Intermediate

David Mertz, Ph.D. (mertz@gnosis.cx)
Developer
Gnosis Software

31 Aug 2005

In this tutorial, David Mertz continues preparing you to take the Linux Professional
Institute® Intermediate Level Administration (LPIC-2) Exam 201. In this third of eight
tutorials, you will learn how to control the mounting and un-mounting of filesystems,
examine existing filesystems, create filesystems, and perform remedial actions on
damaged filesystems.

Section 1. Before you start

Learn what these tutorials can teach you and how you can get the most from them.

About this series

The Linux Professional Institute (LPI) certifies Linux system administrators at junior
and intermediate levels. To attain each level of certification, you must pass two LPI
exams.

Each exam covers several topics, and each topic has a weight. The weights indicate
the relative importance of each topic. Very roughly, expect more questions on the
exam for topics with higher weight. The topics and their weights for LPI exam 201
are:

Topic 201
Linux kernel (weight 5).

Topic 202

Filesystem
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 1 of 12

mailto:mertz@gnosis.cx
http://www.lpi.org
http://www.ibm.com/legal/copytrade.shtml

developerWorks® ibm.com/developerWorks

System startup (weight 5).

Topic 203
Filesystem (weight 10). The focus of this tutorial.

Topic 204
Hardware (weight 8).

Topic 209
File and service sharing (weight 8).

Topic 211
System maintenance (weight 4).

Topic 213
System customization and automation (weight 3).

Topic 214
Troubleshooting (weight 6).

The Linux Professional Institute does not endorse any third-party exam preparation
material or techniques in particular. For details, please contact info@lIpi.org.

About this tutorial

Welcome to "Filesystem," the third of eight tutorials designed to prepare you for LPI
exam 201. In this tutorial, you will learn how to control the mounting and
un-mounting of filesystems, examine existing filesystems, create filesystems, and
perform remedial actions on damaged filesystems.

The tutorial is organized according to the LPI objectives for this topic, as follows:

2.203.1 Operating the Linux filesystem (weight 3)
You will be able to properly configure and navigate the standard Linux
filesystem. This objective includes configuring and mounting various filesystem
types. Also included is manipulating filesystems to adjust for disk space
requirements or device additions.

2.203.2 Maintaining a Linux filesystem (weight 4)
You will be able to properly maintain a Linux filesystem using system utilities.
This objective includes manipulating a standard ext2 filesystem.

2.203.3 Creating and configuring filesystem options (weight 3)
You will be able to configure automount filesystems. This objective includes
configuring automount for network and device filesystems. Also included is
creating non-ext2 filesystems for devices such as CD-ROMs.

This tutorial addresses elements of Linux as well as external tools that are useful for
working with Linux systems. Support for filesystems, devices, and partitions is either
compiled into the base kernel or included in kernel modules.

Filesystem
Page 2 of 12 © Copyright IBM Corporation 1994, 2007. All rights reserved.

mailto:info@lpi.org
http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

However, various tools that you are likely to use in managing these filesystems
recognized by Linux are userland utilities and therefore only commonly included with
Linux distributions rather than part of Linux itself. Nonetheless, filesystem tools are
essential for working with pretty much every Linux system regardless of its intended
use (even non-networked or embedded systems).

Prerequisites
To get the most from this tutorial, you should already have a basic knowledge of

Linux and a working Linux system on which you can practice the commands covered
in this tutorial.

Section 2. Creating and configuring filesystem options

Let's go out of order and start with creating and configuring filesystems and options.

Creating partitions

Before you can work with Linux filesystems, you need to create them. But before you
can create a filesystem, you need to create a partition to put it on. As a brief primer,
on x86 machines, hard disks may be divided into four primary partitions, but the last
of those primary partitions may contain a number of extended partitions inside it.

In the past there were a number of restrictions about the highest cylinders where
bootable partitions can occur, maximum disk sizes, locations of primary partitions on
large disks, and so on. However, for the last five years or more, pretty much all
system BIOSes flexibly handle disks of essentially unlimited size, and modern
bootloaders (at least for Linux) have no important restrictions about partition sizes or
locations.

The only rule that remains to worry about nowadays concerns operating systems
other than Linux. Sometimes those still insist on living in primary partitions near the
front of a hard disk. Linux partitions are more than happy to reside on extended
partitions and anywhere on any accessible disk drive.

There are several widely used tools in the Linux world for creating and manipulating
partitions on hard disks. The oldest such tool is fdisk. Somewhat later, the
curses-based cfdisk became popular. GNU parted is also used in many distributions.
Further, the installation systems for most Linux distributions and/or their graphical
environments come with partitioning front-ends that provide friendlier interfaces to
viewing and modifying partitions.

Of these tools, fdisk remains the most flexible and most forgiving tool. But "forgiving"

Filesystem
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 3 of 12

http://www.ibm.com/legal/copytrade.shtml

developerWorks® ibm.com/developerWorks

is a slightly odd term to use here. Writing unintended partition-table information is a
recipe for disaster regardless of what tool you use. But if your partitions have been
created in somewhat non-standard ways, often by non-Linux operating systems and
tools, fdisk will generally forge ahead where other tools might refuse to try at all. If it
works, however, cfdisk is generally friendlier and more interactive. And parted
provides more powerful options about resizing and moving existing partitions
non-destructively than fdisk or cfdisk.

Whatever tool you use to create partitions, the concepts are similar. First, you need
to perform these operations as root, ideally in single-user mode. And it's hard to
make this point too strongly: Be careful when you modify partitions: ideally, have all
important data backed up, and pay careful attention to what changes you make.

Before you start modifying a partition table, it is a good idea to be clear about what
partitions currently exist. The command f di sk -1 / dev/ hda (or similar for other
disks, for example /dev/hdb or /dev/sda) gives you information on existing partitions.
nmount is also helpful in understanding how these existing partitions are actually
being used. If you wish to create new partitions, keep in mind any extra sectors
within the fourth primary partition that might be available for additional extended
partitions.

Let's see an example of a partition table on a Linux system of mine:

Listing 1. Sample partition table

% fdisk -1 /dev/sda
Di sk /dev/sda: 80.0 GB, 80026361856 bytes
255 heads, 63 sectors/track, 9729 cylinders

Devi ce Boot Start End Bl ocks Id System
/dev/sdal * 1 1216 9767488+ 7 HPFS/ NTFS

/ dev/ sda3 1217 4255 24410767+ 83 Linux

/ dev/ sda4d 4256 9729 43969905 5 Extended

/ dev/ sda5 4256 4380 1004031 82 Linux swap /
Sol ari s

/ dev/ sda6 4381 5597 9775521 83 Linux

This tells us several things. First of all, we can see that partition one is probably
used by a foreign operating system. And running nount will let us know:

% nmount | head -1
/dev/sda3 on / type reiserfs (rw, noatine, notail, conm t=600)

That is, the existing system is rooted on /dev/sda3. Perhaps most interestingly, the
/dev/sda4 partition extends to cylinder 9729, but the extended partitions within it use
only part of that space.

After discovering some free space available on the drive, let's create a partition
within it using fdisk:

% f di sk / dev/ sda

The number of cylinders for this disk is set to 9729. There is nothing wrong with that,

Filesystem
Page 4 of 12 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

but this is larger than 1024 and could, in certain setups, cause problems with:

1. Software that runs at boot time (such as old versions of LILO).

2. Booting ant partitioning software from other operating systems (such as
DOS FDISK, OS/2 FDISK).

Listing 2. Creating a partition

Command (m for help): n
Conmand acti on

| | ogi cal (5 or over)

Ip primary partition (1-4)

First cylinder (5598-9729), default 5598):

Usi ng default val ue 5598

Last cylinder or +size or +sizeMor +sizeK (5598-9729, default 9729):
+10000M

Command (mfor help): w
The partition table has been altered!

Everything that follows a colon is typed in by the user (you). At this point, we have
created a new 10 GB Linux partition:

/ dev/ sda7 5598 6814 9775521 83 Li nux

Keep reading to find out how to use this partition. Note that you may need to reboot
a system to make new partitions accessible.

Making a filesystem in a partition

Just having a partition is not quite enough; you need to make the filesystem. Above
we created a new Linux partition at /dev/sda7, but we need to decide which of the
many filesystems Linux supports to use within that partition. Do we want the
historical default ext2? Or the newer journaling-enhanced extension ext3 format?
Maybe we want one of the enhanced filesystems contributed to Linux by other
parties: ReiserFS, XFS, JFS. Or maybe we need a filesystem that interoperates with
another operating system, such as Minix, MSDOS, or VFAT (some others can be
read if created already, but not always created with Linux tools).

All of the tools for making new filesystems follow the naming convention nkf s. *.
That is, your system might have nkf s. ext 2, nkf s. m ni x, nkf s. xf x, and so on,
usually installed in /sbin/. Also, you may access each of these using the basic nkf s
-t <f stype> switch. Several, but not all, of the filesystems also have compact
forms like mke3f s. The filesystems that are available depend on your specific Linux
distribution and version, and any extra tools you might have installed. nkf s. ext 2 is
available on nearly every distribution.

The basics of making a filesystem are simple. Just run your desired nkf s. * tool
against the partition you want the filesystem to exist on. For example:

Filesystem
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 5 of 12

http://www.ibm.com/legal/copytrade.shtml

developerWorks® ibm.com/developerWorks

% nkfs. xfs /dev/sda7

The displayed messages will vary according to the filesystem type you used.
Generally, the messages give you information on the number of inodes, blocks,
journaling type (if any), extents, and fragments relevant to that particular filesystem's
usage strategy. Many of the filesystem creation tools warn you if you try to create a
new filesystem on a partition with an existing filesystem, but not all of them will, so
proceed with great caution (creating a new filesystem over an old one will probably
result in data loss).

Making an ISO filesystem with mkisofs

A special case of making a filesystem is the creation of an ISO filesystem, which is a
system image that may be written to a writeable CD or DVD device. An ISO
filesystem is special in the sense that it is really just a (large) file with data laid out in
a certain way rather than in an arrangement of a raw device like /dev/cdrom or
/dev/hdb3.

The basic idea of creating an I1SO filesystem -- which really means either an
ISO9660 or HFS hybrid volume -- is simply to take the files in one or more existing
hierarchies and arrange them into an 1ISO image. ISO9660 itself is limited to simple
DOS-style 8.3 names, but the Rock Ridge and Joliet extensions allow storage of
longer names and/or additional file attributes. For example, to create an image of a
project, you might use a command like:

% nki sofs -0 ProjectCD.iso -r ~/project-files ~/project-extras

In this case, we create an ISO image that uses Rock Ridge attributes (but unlike - R
sets more useful values, such as all files readable) and contains a merge of all the
files in two directories. Other options would let us add bootable headers to the
image, create an HFS image, attach directories in specified locations other than root,
and fine-tune file options.

Making an ISO filesystem with cdrecord

Transferring an 1ISO image to a recordable CD or DVD is often accomplished
nowadays using a front-end tool, often a GUI interface. For example, both Gnome
and KDE make CD burning part of their file-manager interface. Some commercial
tools exist also. But for a system administrator, the older command-line tool

cdr ecor d is a trusted utility that is present on most modern distributions and is
much closer to "standard" than are other front-ends. Generally, the basic usage just
requires specifying the device you want to write to and the 1SO file you want to write.

As usual with Linux utilities, you may also specify a number of options to the record
process, such as - over bur n for CDs larger than 650 MB or a specific burn speed
for your writer. See the manpage for cdr ecor d for current details.

You can find the device with the - scanbus option. The device you want is named

Filesystem
Page 6 of 12 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

as a numeric triple indicating the bus, not a regular block device in the filesystem.
For example, you might see something like (abridged):

Listing 3. Finding a recordable device

% cdr ecord -scanbus

scsi busO:

0,0,0 0) 'ATA " "WDC WDBOOUE- OOHC ' 09.0' Disk
0,1,0 1) *

[]

scsi busl:

1,0,0 100) 'Slintype' 'DVDRW SOSW 852S ' 'PSB2' Renpvabl e
o

With bus information in hand, you can burn an image:

% sudo cdrecord -overburn -v speed=16 dev=1,0,0
/ medi a/ KNOPPI X_V3. 6- 2004- 08- 16- EN. i so

In this case, the image is oversized and | know my burner supports 16x. The action
command output is rather verbose because of the - v option, but that helps in
understanding the whole process.

Making an ISO filesystem with dd

Of final note, sometimes you want to create a brand new ISO image not out of some
directories in your main filesystem, but rather from an already existing CD or DVD.
To make an ISO image from a CD, just use the command dd, but refer to the raw
block device for the CD rather than to the mounted location:

% dd if=/dev/cdrom of =proj ect-cd.iso

You might wonder why not just use cp if the goal is to copy bytes. Actually, if you
ignore a reported 1/O error when the raw device runs out of bytes to copy, the cp
command is likely to work. However, dd is better style (and doesn't complain, but
instead reports a summary of activity).

Section 3. Operating the Linux filesystem

Mounting and unmounting with mount and umount

A flexible feature of Linux systems is the fine-tuned control you have over mounting
and unmounting filesystems. Unlike under Windows and some other operating
systems, partitions are not automatically assigned locations by the Linux kernel, but

Filesystem
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 7 of 12

http://www.ibm.com/legal/copytrade.shtml

developerWorks® ibm.com/developerWorks

are instead attached to the single / root hierarchy by the nrount command.
Moreover, different filesystem types (on different drives, even) may be mounted
within the same hierarchy. You can unmount a particular partition with the unount
command, specifying either the mount point (such as /home) or the raw device (such
as /dev/hda?).

For recovery purposes, the ability to control mount points lets you do forensic
analysis on partitions -- using fsck or other tools -- without risk of further damage to a
damaged filesystem. You may also custom mount a filesystem using various
options; the most important of these is mounting read-only using either of the
synonyms -r or-o ro.

As a quick example, you might want to substitute one user directory location for
another, either because of damage to one or simply to expand disk space or move
to a faster disk. You might perform this switch using something like:

unount /hone # old /dev/hda7 hone dir
mount -t xfs /dev/sdal /hone # new SCSI disk using XFS
nount -t ext3 /dev/sda2 /tnp # also put the /tnp on SCSI

Default mounting

For day-to-day operation, you generally want a pretty fixed set of mounts to happen
at every system boot. You control the mounts that happen at bootup by putting
configuration lines in the file /etc/fstab. A typical configuration might look something
like this:

Listing 4. Sample configuration for mounting at bootup

<file systen> <nmount point> <type> <options> <dunp> <pass>
pr oc / proc pr oc defaul ts 0 0
/ dev/ sda3 / reiserfs notail 0 1
/ dev/ sda5 none swap sSw 0 0
/ dev/ sda6 / hone ext 3 rw 0 2
/ dev/ scdO / medi a/ cdr onD udf , i s09660 ro, user,noauto O 0

/ medi a/ Ubunt u-5. 04-install-i386.iso /nedia/Ubuntu_5.04 is09660
rw,loop 00

In the above listing, the first field (<file system>) is normally the block device to
mount. The second field (<mount point>) is the mounted location. In some special
cases, something other than a block device is given first. For super nount devices,
you will see none. / pr oc is another odd case. You might also mount loopback
devices, which are usually regular files.

The third field (<type>) and fourth field (<options>) are fairly straightforward; options
depend on filesystem type and usage. The fifth field (<dump>) is usually zero. The
sixth field (<pass>) should be 1 for the root filesystem and 2 for other filesystems
that should be f scked during system boot.

Filesystem
Page 8 of 12 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

Automounting with AMD and automount

Linux has quite a few ways of automatically mounting media that is removable
(floppies, CDs, USB drives) or otherwise not of fixed availability (such as NFS
filesystems). The goal of all these tools is similar, but each works slightly differently.

The tool AMD (automount daemon) is somewhat older and operates in userland.
Basically, AMD runs periodically to see if any new mountable filesystems have
become available generally for NFS filesystems. For the most part, AMD has been
replaced in Linux distributions by Autofs, which runs as a kernel process.

You set up Autofs by compiling it into the kernel you use. After that, the behavior of
the Autofs daemon (usually /etc/init.d/autofs) is controlled by the file
/etc/auto.master, which in turn references a map file. For example:

Sanpl e auto.master file
Format of this file: nountpoint map options
/nrmt /etc/auto.mmt --timeout=10

The referenced / et ¢/ aut 0. mt specifies one or more subdirectories of /mnt that
will be mounted (if access is requested). Unmounting will occur automatically, in this
case 10 seconds after last access.

Sanpl e /etc/auto. mt

fl oppy -fstype=auto,rw, sync, unask=002 :/dev/fdO
cdrom - f stype=i s09660, r o, nosui d, nodev :/dev/cdrom
renote -fstype=nfs exanple.com/sone/dir

Automounting with supermount and submount

The tools super nount and subnount are kernel-level tools (either compiled into
the base kernel or kernel modules) to automatically mount removable media when
accessed. subnount is somewhat newer, but super nount is still probably used in
more distributions. Neither tool is useful for NFS remote mounts, but either is more
seamless than Autofs for local media.

In either case, devices requiring automounting are generally listed in the /etc/fstab
configuration. The tools use slightly different syntaxes in /etc/fstab, but both are
straightforward. A super nount -enabled /etc/fstab might contain the following:

Exanpl e of supermount in /etc/fstab

none / mt/ cdr om super nount fs=auto, dev=/dev/cdromO O

none /mt/fl oppy supernount fs=auto, dev=/dev/fdO,--,user,rwo0
0

subnount specifies the block device in the regular location rather than as a mount
option. For example:

Filesystem
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 9 of 12

http://www.ibm.com/legal/copytrade.shtml

developerWorks® ibm.com/developerWorks

[/ dev/ cdrom / mt/cdrom subfs fs=cdfss,ro,users 0 O
/[dev/fdO /mt/fl oppy subfs fs=floppyfss,rw,users 0 0

What is currently mounted?

A Linux user has several ways to see a list of current mounts. The nount command
with no options (or with the - | option) lists currently mounted paths. If you like, you
can filter the results with the -t f st ype option.

The underlying dynamic information on mounted filesystems lives in /etc/mtab. The
nount and unount commands and other systems processes will update this file to
reflect current status; you should treat this file as read-only. A subset of the nount
status information is additionally contained in /proc/mounts.

Special tools

The tool sync forces changed unwritten blocks to disk. You should not need to use
this in normal situations, but you can sometimes check for disk problems by
checking for a non-zero exit status. Modern filesystems, particularly journaling
filesystems like ext3, Reiser, and JFS, effectively do syncing on every write.

If you like, you can manually disable or enable the use of a swapping or
enable/disable swapping for particular devices. Normally, every device marked as
type swap in /etc/fstab is used for swapping.

Section 4. Maintaining a Linux filesystem

Fixing a filesystem with fsck
Your best friend in repairing a broken filesystem is f sck.

The tool called f sck is actually just a front-end for a number of more narrow

f sck. * tools -- f sck. ext 2, f sck. ext 3, or f sck. rei ser. You may specify the
type explicitly using the -t option, but f sck will make an effort to figure it out on its
own. Read the manpage for f sck or f sck. * for more details. The main thing you

want to know is that the - a option will try to fix everything it can automatically.

You can check an unmounted filesystem by mentioning its raw device. For example,
use f sck / dev/ hda8 to check a partition not in use. You can also check a rooted
filesystem such as f sck / hone, but generally do that only if the filesystem is
already mounted as read-only, not as read-write.

Filesystem
Page 10 of 12 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

Checking blocks with badblocks

The badbl ocks utility does a lower-level test of the quality of a block device (or
partition) than f sck does. badbl ocks may -- destructively or non-destructively --
examine the reliability of blocks on a device by writing and reading test patterns. The
default option is - n for a slower mode that preserves existing data. For a brand-new
partition with no existing files, you can (and probably should) use the - w. This tool
simply informs you of bad blocks; it does not repair or mark them.

However, in practice, you are usually better off using the badblock-checking wrapper
in the f sck. * tool for your filesystem. For example, e2f sck (also called

f sck. ext 2) has the option - ¢ to find and mark badblocks that the badbl ocks tool
can detect. ReiserFS has similar - - check and - - badbl ocks options (but is not
guite as automatic). Read the documentation for your particular filesystem for details
on wrappers to badbl ocks.

Finding other maintenance utilities

Several tools are available for examining and fine-tuning Linux filesystems. In
normal usage, the default settings for filesystems are well designed, but occasionally
you will want to use filesystem tools for forensic analysis on crashed systems or to
tune performance on systems with well-defined usage patterns.

Each filesystem type has its own set of tools; check the documentation for the
filesystem you use for more details. Most have a similar array of tools. Some
examples include:

» dunpe2f s: Output information about an ext2/3 filesystem.

* tune2fs: Adjust filesystem parameters on an ext2/3 filesystem.

« debugf s: Interactively fine-tune and examine an ext2/3 filesystem.

» debugr ei ser f s: Output information about a Reiser filesystem.

* reiserfstune: Adjust filesystem parameters on a Reiser filesystem.

» xfs_adm n: Adjust filesystem parameters of an XFS filesystem.

Filesystem
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 11 of 12

http://www.ibm.com/legal/copytrade.shtml

developerWorks® ibm.com/developerWorks

Resources

Learn

» Atthe LPIC Program, find task lists, sample questions, and detailed objectives
for the three levels of the Linux Professional Institute's Linux system
administration certification.

e "Common threads: Advanced filesystem implementor's guide, Parts 1 - 13"
(developerWorks, starting June 2001) is an excellent series on Linux
filesystems.

» Find more resources for Linux developers in the developerWorks Linux zone.
Get products and technologies

e Order the SEK for Linux, a two-DVD set containing the latest IBM trial software
for Linux from DB2®, Lotus®, Rational®, Tivoli®, and WebSphere®.

» Build your next development project on Linux with IBM trial software, available
for download directly from developerWorks.

Discuss
« Participate in the discussion forum for this content.

» Getinvolved in the developerWorks community by participating in
developerWorks blogs.

About the author

David Mertz, Ph.D.

David Mertz is Turing complete, but probably would not pass the Turing Test. For
more on his life, see his personal Web page. He's been writing the developerWorks
columns Charming Python and XML Matters since 2000. Check out his book Text
Processing in Python .

Filesystem
Page 12 of 12 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.lpi.org/en/lpic.html
http://www.ibm.com/developerworks/views/linux/libraryview.jsp?topic_by=All+topics+and+related+products&sort_order=desc&lcl_sort_order=desc&search_by=Common+threads%3A+Advanced+filesystem&search_flag=true&type_by=Articles&show_abstract=true&sort_by=Relevance&end_no=100&show_all=false
http://www.ibm.com/developerworks/linux/
http://www.ibm.com/developerworks/offers/sek/?S_TACT=105AGX03
http://www.ibm.com/developerworks/downloads/?S_TACT=105AGX03
http://www.ibm.com/developerworks/forums/dw_forum.jsp?forum=160&cat=5
http://www.ibm.com/developerworks/blogs/
http://gnosis.cx/dW/
http://gnosis.cx/TPiP/
http://gnosis.cx/TPiP/
http://www.ibm.com/legal/copytrade.shtml

	Table of Contents
	Before you start
	About this series
	About this tutorial
	Prerequisites

	Creating and configuring filesystem options
	Creating partitions
	Making a filesystem in a partition
	Making an ISO filesystem with mkisofs
	Making an ISO filesystem with cdrecord
	Making an ISO filesystem with dd

	Operating the Linux filesystem
	Mounting and unmounting with mount and umount
	Default mounting
	Automounting with AMD and automount
	Automounting with supermount and submount
	What is currently mounted?
	Special tools

	Maintaining a Linux filesystem
	Fixing a filesystem with fsck
	Checking blocks with badblocks
	Finding other maintenance utilities

	Resources
	About the author

