
LPI exam prep: System security
Intermediate Level Administration (LPIC-2) topic 212

Skill Level: Intermediate

David Mertz (mertz@gnosis.cx)
Developer
Gnosis Software, Inc.

13 Jun 2006

In this tutorial, the sixth in a series of seven tutorials covering intermediate network
administration on Linux®, David Mertz continues preparing you to take the Linux
Professional Institute® Intermediate Level Administration (LPIC-2) Exam 202. By
necessity, this tutorial touches briefly on a wide array of Linux-related topics from a
security-conscious network server perspective, including general issues of routing,
firewalls, and NAT translation and the relevant tools. It addresses setting security
policies for FTP and SSH; reviews general access control with tcpd, hosts.allow, and
friends; and presents some basic security monitoring tools and shows where to find
security resources.

Section 1. Before you start

Learn what these tutorials can teach you and how you can get the most from them.

About this series

The Linux Professional Institute (LPI) certifies Linux system administrators at two
levels: junior level (also called "certification level 1") and intermediate level (also
called "certification level 2"). To attain certification level 1, you must pass exams 101
and 102; to attain certification level 2, you must pass exams 201 and 202.

developerWorks offers tutorials to help you prepare for each of the four exams. Each
exam covers several topics, and each topic has a corresponding self-study tutorial
on developerWorks. For LPI exam 202, the seven topics and corresponding
developerWorks tutorials are:

System security
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 1 of 15

mailto:mertz@gnosis.cx
http://www.ibm.com/developerworks/linux/lpi/201.html?S_TACT=105AGX03&S_CMP=tut
http://www.lpi.org
http://www.ibm.com/legal/copytrade.shtml

Table 1. LPI exam 202: Tutorials and topics

LPI exam 202 topic developerWorks tutorial Tutorial summary

Topic 205 LPI exam 202 prep (topic
205):
Networking configuration

Learn how to configure a basic
TCP/IP network, from the
hardware layer (usually
Ethernet, modem, ISDN, or
802.11) through the routing of
network addresses.

Topic 206 LPI exam 202 prep (topic
206):
Mail and news

Learn how to use Linux as a
mail server and as a news
server. Learn about mail
transport, local mail filtering,
mailing list maintenance
software, and server software
for the NNTP protocol.

Topic 207 LPI exam 202 prep (topic
207):
DNS

Learn how to use Linux as a
DNS server, chiefly using
BIND. Learn how to perform a
basic BIND configuration,
manage DNS zones, and
secure a DNS server.

Topic 208 LPI exam 202 prep (topic
208):
Web services

Learn how to install and
configure the Apache Web
server, and learn how to
implement the Squid proxy
server.

Topic 210 LPI exam 202 prep (topic
210):
Network client management

Learn how to configure a
DHCP server, an NIS client
and server, an LDAP server,
and PAM authentication
support. See detailed
objectives below.

Topic 212 LPI exam 202 prep (topic
212):
System security

(This tutorial) Learn how to
configure a router, secure FTP
servers, configure SSH, and
perform various other security
administration tasks. See
detailed objectives below.

Topic 214 LPI exam 202 prep (topic
214):
Network troubleshooting

Coming soon

To start preparing for certification level 1, see the developerWorks tutorials for LPI
exam 101. To prepare for the other exam in certification level 2, see the
developerWorks tutorials for LPI exam 201. Read more about the entire set of
developerWorks LPI tutorials.

The Linux Professional Institute does not endorse any third-party exam preparation
material or techniques in particular. For details, please contact info@lpi.org.

developerWorks® ibm.com/developerWorks

System security
Page 2 of 15 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/developerworks/linux/edu/l-dw-linux-lpic2205-i.html
http://www.ibm.com/developerworks/linux/edu/l-dw-linux-lpic2205-i.html
http://www.ibm.com/developerworks/linux/edu/l-dw-linux-lpic2205-i.html
http://www.ibm.com/developerworks/linux/edu/l-dw-linux-lpic2206-i.html
http://www.ibm.com/developerworks/linux/edu/l-dw-linux-lpic2206-i.html
http://www.ibm.com/developerworks/linux/edu/l-dw-linux-lpic2206-i.html
http://www.ibm.com/developerworks/linux/edu/l-dw-linux-lpic2207-i.html
http://www.ibm.com/developerworks/linux/edu/l-dw-linux-lpic2207-i.html
http://www.ibm.com/developerworks/linux/edu/l-dw-linux-lpic2207-i.html
http://www.ibm.com/developerworks/linux/edu/l-dw-linux-lpic2208-i.html
http://www.ibm.com/developerworks/linux/edu/l-dw-linux-lpic2208-i.html
http://www.ibm.com/developerworks/linux/edu/l-dw-linux-lpic2208-i.html
http://www.ibm.com/developerworks/linux/edu/l-dw-linux-lpic2210-i.html
http://www.ibm.com/developerworks/linux/edu/l-dw-linux-lpic2210-i.html
http://www.ibm.com/developerworks/linux/edu/l-dw-linux-lpic2210-i.html
http://www.ibm.com/developerworks/views/linux/libraryview.jsp?topic_by=All+topics+and+related+products&sort_order=asc&lcl_sort_order=asc&search_by=lpi+exam+101&search_flag=true&type_by=Tutorials&show_abstract=true&sort_by=Title&end_no=100&show_all=false
http://www.ibm.com/developerworks/views/linux/libraryview.jsp?topic_by=All+topics+and+related+products&sort_order=asc&lcl_sort_order=asc&search_by=lpi+exam+101&search_flag=true&type_by=Tutorials&show_abstract=true&sort_by=Title&end_no=100&show_all=false
http://www.ibm.com/developerworks/views/linux/libraryview.jsp?topic_by=All+topics+and+related+products&sort_order=asc&lcl_sort_order=asc&search_by=lpi+exam+201&search_flag=true&type_by=Tutorials&show_abstract=true&sort_by=Title&end_no=100&show_all=false
http://www.ibm.com/developerworks/linux/lpi/index.html?S_TACT=105AGX03&S_CMP=tut
http://www.ibm.com/developerworks/linux/lpi/index.html?S_TACT=105AGX03&S_CMP=tut
mailto:info@lpi.org
http://www.ibm.com/legal/copytrade.shtml

About this tutorial

Welcome to "System security," the sixth of seven tutorials covering intermediate
network administration on Linux. In this tutorial, you learn about a wide array of
topics related to using Linux as a security-conscious network server. Such issues as
routing, firewalls, and NAT translation (and the tools to manage them) are covered,
as well as setting security policies for FTP and SSH. You also learn about general
access control with tcpd, hosts.allow, and friends (revisiting the discussion in LPI
exam 201 prep (topic 209): File and service sharing). Finally, you learn about some
basic security monitoring tools, as well as where to find security resources.

As with the other tutorials in the developerWorks 201 and 202 series, this tutorial is
intended to serve as a study guide and entry point for exam preparation, rather than
complete documentation on the subject. Readers are encouraged to consult LPI's
detailed objectives list and to supplement the information provided here with other
material as needed.

This tutorial is organized according to the LPI objectives for this topic. Very roughly,
expect more questions on the exam for objectives with higher weight.

Table 2. System security: Exam objectives covered in this tutorial

LPI exam objective Objective weight Objective summary

2.212.2
Configuring a router

Weight 2 Configure a system to perform
network address translation
(NAT, IP masquerading), and
state its significance in
protecting a network. This
objective includes configuring
port redirection, managing
filter rules, and averting
attacks.

2.212.3
Securing FTP servers

Weight 2 Configure an FTP server for
anonymous downloads and
uploads. This objective
includes precautions to be
taken if anonymous uploads
are permitted and configuring
user access.

2.212.4
Secure shell (SSH)

Weight 2 Configure an SSH daemon.
This objective includes
managing keys, configuring
SSH for users, forwarding an
application protocol over SSH,
and managing the SSH login.

2.212.5
TCP_wrappers

Weight 1 Configure tcpwrappers to
allow connections to specified
servers only from certain hosts
or subnets.

2.212.6
Security tasks

Weight 3 Install and configure a secure
authentication system;
perform basic security auditing

ibm.com/developerWorks developerWorks®

System security
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 3 of 15

http://www.ibm.com/developerworks/linux/edu/l-dw-linux-lpic2209-i.html
http://www.ibm.com/developerworks/linux/edu/l-dw-linux-lpic2209-i.html
http://www.lpi.org/en/lpic.html
http://www.ibm.com/legal/copytrade.shtml

of source code; receive
security alerts from various
sources; audit servers for
open e-mail relays and
anonymous FTP servers;
install, configure, and run
intrusion detection systems;
and apply security patches
and bug fixes.

Prerequisites

To get the most from this tutorial, you should already have a basic knowledge of
Linux and a working Linux system on which you can practice the commands covered
in this tutorial.

Other resources

As with most Linux tools, it is always useful to examine the manpages for any
utilities discussed. Versions and switches might change between utility or kernel
version or with different Linux distributions. For more in-depth information, the Linux
Documentation Project has a variety of useful documents, especially its HOWTOs.
Also, a variety of books on Linux system security have been published; I have found
O'Reilly's TCP/IP Network Administration, by Craig Hunt to be quite helpful. See the
Resources section for links.

Section 2. Configuring a router

About packet filtering

The Linux kernel includes the "netfilter" infrastructure, which enables you to filter
network packages. Usually this capability is compiled into the base kernel, but a
kernel module may be needed. Either way, module loading should be seamless (for
instance, running iptables will load iptables_filter.o if it needs it).

Packet filtering is controlled with the utility iptables in modern Linux systems;
older systems used ipchains. Before that, it was ipfwadm. While you can still use
ipchains in conjunction with recent kernels if backward compatibility is needed,
you will almost always prefer the enhanced capabilities and improved syntax in
iptables. That said, most of the concepts and switches in iptables are
compatible enhancements to ipchains.

Depending on the exact scenario of filtering (firewall, NAT, etc.), filtering and

developerWorks® ibm.com/developerWorks

System security
Page 4 of 15 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

address translation may occur either before or after routing itself. The same
ipchains tool is used in either case, but different rule sets ("chains") are used for
the cases -- at base, INPUT and OUTPUT. However, filtering can also affect the
routing decision by filtering on the FORWARD chain; this may lead to dropping packets
rather than routing them.

Routing

As well as filtering with iptables (or legacy ipchains), the Linux kernel performs
routing of IP packets it receives. Routing is a simpler process than filtering, though
the two are conceptually related.

During routing, a host simply looks at a destination IP address and decides whether
it knows how deliver a packet directly to that address or whether a gateway is
available that knows how to deliver to that address. If a host can neither deliver a
packet itself nor knows what gateway to forward it to, the packet is dropped.
However, typical configurations include a "default gateway" that handles every
otherwise unspecified address.

Configuration and display of routing information is performed with the utility route.
However, routing may either be static or dynamic.

With static routing, delivery is determined by a routing table that is explicitly
configured by invocations of the route command and its add or del commands.
However, configuring dynamic routing using the routed or gated daemons that
broadcast routing information to adjacent routing daemons is often more useful.

The routed daemon supports the Routing Information Protocol (RIP); the gated
daemon adds support for a number of other protocols -- and can use multiple
protocols at once -- such as:

• Routing Information Protocol Next Generation (RIPng)

• Exterior Gateway Protocol (EGP)

• Border Gateway Protocol (BGP) and BGP4+

• Defense Communications Network Local-Network Protocol (HELLO)

• Open Shortest Path First (OSPF)

• Intermediate System to Intermediate System (IS-IS)

• Internet Control Message Protocol (ICMP and ICMPv6)/Router Discovery

Let's look at a fairly typical static routing table:

Listing 1. Typical static routing table

% /sbin/route
Kernel IP routing table

ibm.com/developerWorks developerWorks®

System security
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 5 of 15

http://www.ibm.com/legal/copytrade.shtml

Destination Gateway Genmask Flags Metric Ref Use Iface
66.98.217.0 * 255.255.255.0 U 0 0 0 eth0
10.10.12.0 * 255.255.254.0 U 0 0 0 eth1
66.98.216.0 * 255.255.254.0 U 0 0 0 eth0
169.254.0.0 * 255.255.0.0 U 0 0 0 eth1
default ev1s-66-98-216- 0.0.0.0 UG 0 0 0 eth0

This means that addresses in the 66.98.217/24 and 66.98.216/23 ranges will be
directly delivered over eth0. Address ranges 10.10.12/23 and 169.254/16 will be
delivered on eth1. Anything left over will be sent to the gateway
ev1s-66-98-216-1.ev1servers.net (the name is cut off in the route display;
you could also use route -n to see that name was IP address 66.98.216.1). If you
wanted to add a different gateway for some other address ranges, you might run
something like this:

Listing 2. Adding new gateway for other address ranges

% route add -net 192.168.2.0 netmask 255.255.255.0 gw 192.168.2.1 dev eth0

For a machine that serves as a gateway itself, you will generally want to run dynamic
routing, using the routed or gated daemons, which may supplement a smaller
number of static routes. The routed daemon is configured by the contents of
/etc/gateways. The gated daemon is more modern and has more capabilities (as
indicated); it is configured by /etc/gated.conf. Generally, if you use either of these,
you will want to launch them in your startup scripts. You must not run both routed
and gated on the same machine because results will be unpredictable and almost
certainly undesirable.

Filtering with iptables

The Linux kernel stores a table of filter rules for IP packets that form a sort of
state-machine. Sets of rules that are processed in sequence are known as "(firewall)
chains." When one chain meets a condition, one of the possible actions is to shift
control to processing another chain as in a state-machine. Before you have added
any rules or states, three chains are automatically present: INPUT, OUTPUT, and
FORWARD. The INPUT chain is where a packet addressed to the host machine
passes and potentially from there to a local application process. The FORWARD chain
is where a packet addressed to a different machine passes, assuming forwarding is
enabled and the routing system knows how to forward that packet. A packet
generated on the local host is sent into the OUTPUT chain for filtering -- if it passes
the filters in the OUTPUT chain (or any linked chains), it is routed out over its network
interface.

One action that a rule can take is to DROP a packet; in that case, no further rule
processing or state transition is taken for that packet. But if a packet is not dropped,
the next rule in a chain is examined to see if it matches the packet. In some cases,
satisfaction of a rule will branch process to a different chain and its set of rules.
Creation, deletion, or modification of rules and of chains in which rules live is
performed with the tool iptables. In older Linux systems, the same function was

developerWorks® ibm.com/developerWorks

System security
Page 6 of 15 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

done using ipchains instead. The concepts behind both tools and even for the
ancient ipfwadm are similar, but iptables syntax is discussed here.

A rule specifies a set of conditions that a packet might meet and what action to take
if the packet does meet that condition. As mentioned, one common action is to DROP
packets. For example, suppose you wanted (for some reason) to disable ping on
the loopback interface (the ICMP interface). You could make this happen with:

Listing 3. Disabling on the loopback interface

% iptables -A INPUT -s 127.0.0.1 -p icmp -j DROP

Of course, that is a silly rule and we probably want to remove it after we test it, like
this:

Listing 4. DROPping the silly rule

% iptables -D INPUT -s 127.0.0.1 -p icmp -j DROP

Deleting a rule with the -D option requires either exactly the same options as
specified when it was added or specification by rule number (which you must
determine in the first place) like this:

Listing 5. Specifying rule number so deletion can work

% iptables -D INPUT 1

A more interesting rule might look at source and destination addresses in packets.
For example, suppose that a problem remote network is trying to utilize services on
a particular subnet of your network. You might block this on your gateway/firewall
machine with:

Listing 6. Blocking the gateway/firewall machine

% iptables -A INPUT -s 66.98.216/24 -d 64.41.64/24 -j DROP

Doing this will stop anything from the 66.98.216.* IP block from communicating
with anything in the local 64.41.64.* subnet. Of course, singling out a specific IP
block for blacklisting is fairly limited as protection. A more likely scenario might be to
allow only a specific IP block to access a local subnet:

Listing 7. Letting a specific IP block access a local subnet

% iptables -A INPUT -s ! 66.98.216/24 -d 64.41.64/24 -j DROP

In this case, only the 66.98.216.* IP block can access the specified subnet.

ibm.com/developerWorks developerWorks®

System security
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 7 of 15

http://www.ibm.com/legal/copytrade.shtml

Moreover, you can use a symbolic name for an address and can specify a particular
protocol to be filtered. You can also select a specific network interface (like eth0) to
filter, but that is less commonly useful. For example, to let only a specific remote
network access a local Web server, you might use:

Listing 8. Letting a specific remote network address access a local Web server

% iptables -A INPUT -s ! example.com -d 64.41.64.124 -p TCP -sport 80 -j DROP

You can specify a number of other options with iptables, including rate limits on
the number of packets that will be allowed or filtering on TCP flags, for example. See
the manpage for iptables for more details.

User-defined chains

You have seen the basics of adding rules to the automatic chains. But much of the
configurability in iptables comes with adding user-defined chains and branching
to them if patterns are matched. New chains are defined with the -N option; you
have already seen branching using the special target DROP. ACCEPT is also a
special target with the obvious meaning. Also, special targets RETURN and QUEUE
are available. The first means to stop processing a given chain and return to its
parent/caller. The QUEUE handler lets you pass packets to a user-space process for
further processing (which might be logging, modification of the packet, or more
elaborate filtering than iptables supports). The simple example in Rusty Russell's
"Linux 2.4 Packet Filtering HOWTO" is a good example of adding a user-defined
chain:

Listing 9. Adding a user-defined chain

Create chain to block new connections, except established locally
% iptables -N block
% iptables -A block -m state --state ESTABLISHED,RELATED -j ACCEPT
% iptables -A block -m state --state NEW -i ! ppp0 -j ACCEPT
% iptables -A block -j DROP # DROP everything else not ACCEPT'd
Jump to that chain from INPUT and FORWARD chains
% iptables -A INPUT -j block
% iptables -A FORWARD -j block

Notice that the block chain ACCEPTs in a limited class of cases, then the final rule
DROPs everything not previously ACCEPTed.

Once you have established some chains, whether adding rules to the automatic
chains or adding user-defined chains, you may use the -L option to view the current
rules.

Network address translation vs. firewalls

The examples we have looked at are mostly in the class of firewall rules. But
network address translation (NAT) is also configured by iptables.

developerWorks® ibm.com/developerWorks

System security
Page 8 of 15 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Basically, NAT is a way of using connection tracking to masquerade packets coming
from a local subnet address as the external WAN address before sending them out
"over the wire" (on the OUTPUT chain). The gateway/router that performs NAT needs
to remember which local host connected to which remote host and reverse the
address translation if packets arrive back from the remote host.

From a filtering perspective though, you simply pretend that NAT does not exist. The
rules you specify should simply use the "real" local addresses regardless of how
NAT might masquerade them to the outside world. Enabling masquerading, such as
in basic NAT, just uses the below iptables command. To use this you will need to
make sure the kernel module iptables_nat is loaded and also turn on IP forwarding:

Listing 10. Enabling the masquerade

% modprobe iptables_nat # Load the kernel module
% iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE
% echo 1 > /proc/sys/net/piv4/ip_forward # Turn on IP forwarding

This capability is called source NAT -- the address of the outgoing packet is
modified. destination NAT (DNAT) also exists to enable port forwarding, load
sharing, and transparent proxying. In those cases, incoming packets are modified to
get to the relevant local host or subnet.

But most of the time when users or administrators talk about NAT, they mean source
NAT. If you mean to configure destination NAT, you would specify PREROUTING
rather than POSTROUTING. For DNAT, the packets are transformed before they are
routed.

Section 3. Securing FTP servers

FTP servers

Many different FTP servers are available for Linux, and different distributions offer
different servers. Naturally, configuration of different servers varies, though most
tend to follow similar configuration directives.

A popular FTP server is vsftpd (the Very Secure FTP daemon). ProFTP is also in
wide use, as are wu-ftpd and ncftpd.

For many purposes, FTP is not really needed at all. For example, secure transfers
for users who have accounts on a server machine can often be accomplished using
scp (secure copy), which relies on the underlying SSH installation, but otherwise
mostly mimics the familiar cp command.

The configuration file for vsftpd is /etc/vsftpd.conf. Other FTP servers use similar

ibm.com/developerWorks developerWorks®

System security
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 9 of 15

http://www.ibm.com/legal/copytrade.shtml

files.

FTP configuration options

Here are a few options to keep in mind in /etc/vsftpd.conf (and probably in your
server if you use a different one):

• anonymous_enabled: Lets anonymous users log in using the
usernames "anonymous" or "ftp".

• anon_mkdir_write_enable: Lets anonymous users create directories
(within world-writable parent directories).

• anon_upload_enable: Lets anonymous users upload files.

• anon_world_readable_only: "YES" by default; rarely a good idea to
change it. Only lets anonymous FTP access world-readable files.

• chroot_list_enable: Specifies a set of users (listed in
/etc/vsftpd.chroot-list) in a "chroot jail" in their home directory upon login.

• ssl_enable: Supports SSL-encrypted connections.

Read the manpages for your FTP server for more complete options. Generally,
running an FTP server is as simple as tweaking a configuration file and running the
server within your initialization scripts.

Section 4. Secure shell (SSH)

Client and server

Most every Linux machine (as well as most other operating systems) should have a
secure shell (SSH) client. Often, the OpenSSH version is used, but a variety of
compatible SSH clients are sometimes used. While an SSH client is essential to
connect to a host, the larger security issues arise in properly configuring an SSH
server.

Since a client initiates a connection to a server, the client is actively choosing to trust
the server. Just having an SSH client does not allow any kind of access into a
machine; therefore, it does not expose vulnerabilities.

Configuring a server is also not particularly complex; the server daemon is designed
to enable and enforce good security practices. But clearly it is a server that is
sharing resources with clients based on requests from the clients the server decides
to honor.

developerWorks® ibm.com/developerWorks

System security
Page 10 of 15 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

The SSH protocol has two versions, version 1 and version 2. In modern systems,
using protocol version 2 is always preferred, but generally both clients and servers
maintain backward compatibility with version 1 (unless this capability is disabled with
configuration options). This lets you connect to increasingly uncommon version
1-only systems.

Somewhat different configuration files are used in version 1 and version 2 protocols.
For protocol version 1, a client first creates an RSA key pair using ssh-keygen and
stores the private key in $HOME/.ssh/identity and the public key in
$HOME/.ssh/identity.pub. This same identity.pub should be appended to the remote
$HOME/.ssh/authorized_keys files.

Obviously, there is a chicken-and-egg problem here: How can you copy a file to a
remote system before you have access? Fortunately, SSH also supports a fallback
authentication method of sending encrypted-on-the-wire passwords that are
evaluated through the usual remote-system login tests (such as, the user account
must exist, and the right password must be provided).

Protocol 2 supports both RSA and DSA keys, but RSA authentication is somewhat
enhanced rather than identical to that in protocol 1. For protocol 2, private keys are
stored in $HOME/.ssh/id_rsa and $HOME/.ssh/id_dsa. Protocol 2 also supports a
number of extra confidentiality and integrity algorithms: AES, 3DES, Blowfish,
CAST128, HMAC-MD5, HMAC-SHA1, and so on. The server can be configured as
to preferred algorithms and order of fallbacks.

For general configuration options rather than key information, the client stores its
keys in /etc/ssh/ssh_config (or if available, in /$HOME/.ssh/config). Client options
can also be configured with the -o switch; a particularly common switch is the -X or
-x to enable or disable X11 forwarding. If enabled, the X11 port is tunneled through
SSH to enable encrypted X11 connections.

Tools like scp also use similar port forwarding over SSH. For example, on the local
machine I am working on, I can launch onto the local display an X11 application that
only exists remotely (on my local subnet in this case):

Listing 11. Launching a remote X11 application

$ which gedit # not on local system
$ ssh -X dqm@192.168.2.2
Password:
Linux averatec 2.6.10-5-386 #1 Mon Oct 10 11:15:41 UTC 2005 i686 GNU/Linux
No mail.
Last login: Thu Feb 23 03:51:15 2006 from 192.168.2.101
dqm@averatec:~$ gedit &

Configuring the server

The sshd daemon, specifically the OpenSSH version, enables secure encrypted
communications between two untrusted hosts over an unsecured network. The base
sshd server is normally started during initialization and listens for client connections

ibm.com/developerWorks developerWorks®

System security
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 11 of 15

http://www.ibm.com/legal/copytrade.shtml

forking a new daemon for each client connection. The forked daemons handle key
exchange, encryption, authentication, command execution, and data exchange.

As with the client tool, the sshd server accepts a variety of options on the command
line, but is normally configured by the file /etc/ssh/sshd_config. A number of other
configuration files are also used. For example, the access controls /etc/hosts.allow
and /etc/hosts.deny are honored. Keys are stored in a similar fashion to the client
side, in /etc/ssh/ssh_host_key (protocol 1), /etc/ssh/ssh_host_dsa_key,
/etc/ssh/ssh_host_rsa_key, and public keys in /etc/ssh/ssh_host_dsa_key.pub and
friends. Also, as with the client, you will use ssh-keygen to generate keys in the first
place. See the manpage for sshd and ssh-keygen for details on configuration files
and copying generated keys to appropriate files.

Many configuration options ar in /etc/ssh/sshd_config, and the default values are
generally sensible (and sensibly secure). A few options are worth mentioning:

• AllowTcpForwarding enables or disables port forwarding (tunneling),
and is set to "YES" by default.

• Ciphers controls the list and order of encryption algorithms to be utilized.

• AllowUsers and AllowGroups accept wildcard patterns and allow you
to control which users may even attempt further authentication.

• DenyGroups and DenyUsers act symmetrically as you would expect.

• PermitRootLogin lets the root user SSH into a machine.

• Protocol lets you specify whether both protocol versions are accepted
(and if not, which one is).

• TCPKeepAlive is good to look at if you are losing SSH connections. A
"keepalive" message is sent to check connections if this is enabled, but
this can cause disconnection if transient errors occur in the route.

SSH tunneling

OpenSSH lets you create a tunnel to encapsulate another protocol within an
encrypted SSH channel. This capability is enabled on the sshd server by default,
but could have been disabled with command-line or configuration-file options.
Assuming the capability is enabled, clients can easily emulate whatever port/protocol
they wish to use for a connection. For example, to create a tunnel for telnet:

Listing 12. Digging a tunnel for telnet

% ssh -2 -N -f -L 5023:localhost:23 user@foo.example.com
% telnet localhost 5023

Of course, this example is fairly pointless since an SSH command shell does the
same thing as a telnet shell. But you could create a POP3, HTTP, SMTP, FTP, X11,

developerWorks® ibm.com/developerWorks

System security
Page 12 of 15 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

or other protocol connection in this analogous manner. The basic concept is that a
particular local host port acts as if it were the remote service with actual
communication packets traveling over the SSH connection in encrypted form.

The options we used in the example are:

• -2 (use protocol 2),

• -N (no command/tunnel only),

• -f (SSH in background), and

• -L, (describe tunnel as "localport:remotehost:remoteport").

The server (with username) is also specified.

Section 5. TCP_wrappers

What is "TCP_wrappers"?

The first thing to know about TCP_wrappers is that you should not use it, and it is
not actively maintained. However, you might find the tcpd daemon from
TCP_wrappers still running on a legacy system. In its time, this was a good
application, but its functionality has been superceded by iptables and other tools.
The general purpose of TCP_wrappers is to monitor and filter incoming requests for
SYSTAT, FINGER, FTP, TELNET, RLOGIN, RSH, EXEC, TFTP, TALK, and other
network services.

TCP_wrappers can be configured in a couple of ways. One is to substitute tcpd for
other servers, providing arguments to pass control on to the particular server once
tcpd has done its logging and filtering. Another method leaves the network daemons
alone and modifies the inetd configuration file. For example, an entry such as:

tftp dgram udp wait root /usr/etc/tcpd in.tftpd -s /tftpboot

causes an incoming tftp request to run through the wrapper program (tcpd) with a
process name in.tftpd.

Section 6. Security tasks

This objective is a hodgepodge of tasks -- all important for maintaining a secure

ibm.com/developerWorks developerWorks®

System security
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 13 of 15

http://www.ibm.com/legal/copytrade.shtml

network -- that I can't hope to do justice to in the space of this tutorial. I recommend
spending time familiarizing yourself with the resources and tools listed in this
section.

Web sites worth monitoring for security issues and patches include:

• Security focus news: The Security Focus Web site is one of the best sites
for reporting and discussing security issues and specific vulnerabilities.
The site includes several newsletters and alerts that you can subscribe to,
as well as general columns and searchable bug reports.

• The Bugtraq mailing list: A full-disclosure moderated mailing list for the
detailed discussion and announcement of computer security
vulnerabilities: what they are, how to exploit them, and how to fix them.

• CERT Coordination Center: Hosted by Carnegie Mellon University, CERT
has a range of advisories similar to the Security Focus site, with a bit
more emphasis on tutorials and guidelines. Keeping track of multiple such
sites is a good way to make sure you are current on all the security
incidents affecting your OS, distribution, and specific tools or servers.

• Computer Incident Advisory Capability: CIAC Information Bulletins are
distributed to the Department of Energy community to notify sites of
computer security vulnerabilities and recommended actions. Similarly,
CIAC Advisory Notices serve to alert sites to severe, time-critical
vulnerabilities and solutions to be applied as soon as possible. CIAC
Technical Bulletins cover technical security issues and analyses of a less
time-sensitive nature.

• Information on securing open mail relays: A common vulnerability on
systems with mail servers is failure to properly secure systems against
malicious use by spammers and fraudulent mailers. The Open Relay
Database provides tutorials on security-particular mail tools, open relay
testing online tools, and a database of known problem servers that can be
used to configure blacklists if site administrators so desire.

Tools to monitor security you might consider running include:

• Open Source Tripwire: A security and data integrity tool for monitoring
and alerting on specific file changes.

• scanlogd : A TCP port scan detection tool.

• Snort: Network intrusion prevention and detection using a rule-driven
language; it uses signature-, protocol-, and anomaly-based inspection
methods.

developerWorks® ibm.com/developerWorks

System security
Page 14 of 15 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.securityfocus.com/
http://www.securityfocus.com/archive/1
http://www.cert.org/
http://www.ciac.org/ciac/index.html
http://www.ordb.org/faq/
http://sourceforge.net/projects/tripwire/
http://www.openwall.com/scanlogd/
http://www.snort.org/
http://www.ibm.com/legal/copytrade.shtml

Resources

Learn

• Review the entire LPI exam prep tutorial series on developerWorks to learn
Linux fundamentals and prepare for system administrator certification.

• At the LPIC Program, find task lists, sample questions, and detailed objectives
for the three levels of the Linux Professional Institute's Linux system
administration certification.

• TCP/IP Network Administration, Third Edition by Craig Hunt (O'Reilly, April
2002) is an excellent resource on Linux networking.

• For more in-depth information, the Linux Documentation Project has a variety of
useful documents, especially its HOWTOs.

• In the developerWorks Linux zone, find more resources for Linux developers.

• Stay current with developerWorks technical events and Webcasts.

Get products and technologies

• Order the SEK for Linux, a two-DVD set containing the latest IBM trial software
for Linux from DB2®, Lotus®, Rational®, Tivoli®, and WebSphere®.

• With IBM trial software, available for download directly from developerWorks,
build your next development project on Linux.

Discuss

• This list of more than 700 Linux User Groups around the world can help you find
local and distance study groups for LPI exams.

• Check out developerWorks blogs and get involved in the developerWorks
community.

About the author

David Mertz
David Mertz has been writing the developerWorks columns Charming Python and
XML Matters since 2000. Check out his book Text Processing in Python . For more
on David, see his personal Web page.

Trademarks

DB2, Lotus, Rational, Tivoli, and WebSphere are trademarks of IBM Corporation in
the United States, other countries, or both.
Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

ibm.com/developerWorks developerWorks®

System security
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 15 of 15

http://www.ibm.com/developerworks/linux/lpi/index.html?S_TACT=105AGX03&S_CMP=tut
http://www.lpi.org/en/lpic.html
http://www.oreilly.com/catalog/tcp3/index.html
http://www.tldp.org/
http://www.ibm.com/developerworks/linux/
http://www.ibm.com/developerworks/offers/techbriefings/?S_TACT=105AGX03&S_CMP=art
http://www.ibm.com/developerworks/offers/sek/?S_TACT=105AGX03&S_CMP=art
http://www.ibm.com/developerworks/downloads/?S_TACT=105AGX03&S_CMP=art
http://lugww.counter.li.org/
http://www.ibm.com/developerworks/blogs/
http://www.ibm.com/developerworks/community
http://www.ibm.com/developerworks/community
http://gnosis.cx/TPiP/
http://gnosis.cx/dW/
http://www.ibm.com/legal/copytrade.shtml

	Table of Contents
	Before you start
	About this series
	About this tutorial
	Prerequisites
	Other resources

	Configuring a router
	About packet filtering
	Routing
	Filtering with iptables
	User-defined chains
	Network address translation vs. firewalls

	Securing FTP servers
	FTP servers
	FTP configuration options

	Secure shell (SSH)
	Client and server
	Configuring the server
	SSH tunneling

	TCP_wrappers
	What is "TCP_wrappers"?

	Security tasks
	Resources
	About the author
	Trademarks

