
LPI exam 301 prep, Topic 302: Installation and
development
Senior Level Linux Professional (LPIC-3)

Skill Level: Intermediate

Sean Walberg (sean@ertw.com)
Network engineer
Freelance

04 Dec 2007

In this tutorial, Sean Walberg helps you prepare to take the Linux Professional
Institute® Senior Level Linux Professional (LPIC-3) exam. In this second in a series
of six tutorials, Sean walks you through installing and configuring a Lightweight
Directory Access Protocol (LDAP) server, and writing some Perl scripts to access the
data. By the end of this tutorial, you'll know about LDAP server installation,
configuration, and programming.

Section 1. Before you start

Learn what these tutorials can teach you and how you can get the most from them.

About this series

The Linux Professional Institute (LPI) certifies Linux system administrators at three
levels: junior level (also called "certification level 1"), advanced level (also called
"certification level 2"), and senior level (also called "certification level 3"). To attain
certification level 1, you must pass exams 101 and 102. To attain certification level
2, you must pass exams 201 and 202. To attain certification level 3, you must have
an active advanced-level certification and pass exam 301 ("core"). You may also
pass additional specialty exams at the senior level.

developerWorks offers tutorials to help you prepare for the five junior, advanced, and
senior certification exams. Each exam covers several topics, and each topic has a
corresponding self-study tutorial on developerWorks. Table 1 lists the six topics and

Installation and development
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 1 of 21

mailto:sean@ertw.com
http://www.lpi.org
http://www.ibm.com/legal/copytrade.shtml

corresponding developerWorks tutorials for LPI exam 301.

Table 1. LPI exam 301: Tutorials and topics
LPI exam 301 topic developerWorks tutorial Tutorial summary

Topic 301 LPI exam 301 prep:
Concepts, architecture, and
design

Learn about LDAP concepts
and architecture, how to
design and implement an
LDAP directory, and about
schemas.

Topic 302 LPI exam 301 prep:
Installation and development

(This tutorial) Learn how to
install, configure, and use the
OpenLDAP software. See the
detailed objectives.

Topic 303 LPI exam 301 prep:
Configuration

Coming soon.

Topic 304 LPI exam 301 prep:
Usage

Coming soon.

Topic 305 LPI exam 301 prep:
Integration and migration

Coming soon.

Topic 306 LPI exam 301 prep:
Capacity planning

Coming soon.

To pass exam 301 (and attain certification level 3), you should:

• Have several years of experience in installing and maintaining Linux on a
number of computers for various purposes

• Have integration experience with diverse technologies and operating
systems

• Have professional experience as, or training to be, an enterprise-level
Linux professional (including having experience as a part of another role)

• Know advanced and enterprise levels of Linux administration including
installation, management, security, troubleshooting, and maintenance.

• Be able to use open source tools to measure capacity planning and
troubleshoot resource problems

• Have professional experience using LDAP to integrate with UNIX®
services and Microsoft® Windows® services, including Samba, Pluggable
Authentication Modules (PAM), e-mail, and Active Directory

• Be able to plan, architect, design, build, and implement a full environment
using Samba and LDAP as well as measure the capacity planning and
security of the services

• Be able create scripts in Bash or Perl or have knowledge of at least one
system programming language (such as C)

The Linux Professional Institute doesn't endorse any third-party exam preparation

developerWorks® ibm.com/developerWorks

Installation and development
Page 2 of 21 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/developerworks/linux/edu/l-dw-linux-lpic3301-i.html
http://www.ibm.com/developerworks/linux/edu/l-dw-linux-lpic3301-i.html
http://www.ibm.com/legal/copytrade.shtml

material or techniques in particular.

About this tutorial

Welcome to "Installation and development," the second of six tutorials designed to
prepare you for LPI exam 301. In this tutorial, you learn about LDAP server
installation and configuration, and how to use Perl to access your new LDAP server.

This tutorial is organized according to the LPI objectives for this topic. Very roughly,
expect more questions on the exam for objectives with higher weights.

Objectives

Table 2 shows the detailed objectives for this tutorial.

Table 2. Installation and development: Exam objectives covered in this tutorial
LPI exam objective Objective weight Objective summary

302.1
Compiling and installing
OpenLDAP

3 Compile and install
OpenLDAP from source and
from packages

302.2
Developing for LDAP with
Perl/C++

1 Write basic Perl scripts to
interact with an LDAP
directory

Prerequisites

To get the most from this tutorial, you should have advanced knowledge of Linux
and a working Linux system on which to practice the commands covered.

If your fundamental Linux skills are a bit rusty, you may want to first review the
tutorials for the LPIC-1 and LPIC-2 exams.

Different versions of a program may format output differently, so your results may
not look exactly like the listings and figures in this tutorial.

System requirements

To follow along with the examples in these tutorials, you'll need a Linux workstation
with the OpenLDAP package and support for PAM. Most modern distributions meet
these requirements.

ibm.com/developerWorks developerWorks®

Installation and development
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 3 of 21

http://www.ibm.com/developerworks/linux/lpi/index.html
http://www.ibm.com/legal/copytrade.shtml

Section 2. Compiling and installing OpenLDAP

This section covers material for topic 302.1 for the Senior Level Linux Professional
(LPIC-3) exam 301. This topic has a weight of 3.

In this section, learn how to:

• Compile and configure OpenLDAP from source

• Understand OpenLDAP backend databases

• Manage OpenLDAP daemons

• Troubleshoot errors during installation

OpenLDAP is an open source application that implements an LDAP server and
associated tools. Because it's open source, you can download the source code free
of charge. The OpenLDAP project doesn't distribute binaries directly, but most major
distributions package it themselves. In this tutorial, you learn how to install
OpenLDAP from both source and packages.

Compiling from source

The first order of business is to download the latest version of OpenLDAP from the
project site (see the Resources section for a download link). The project generally
has two active versions available: One is a stable version, and the other is a test
version. This tutorial was written using the stable versions 2.3.30 and 2.3.38. If
you're following along, some of the directory names may be different depending on
which version you have.

To extract the source code from the downloaded tarball, enter tar -xzf
openldap-stable-20070831.tgz. This decompresses and untars the
downloaded file into a directory. Change into the new directory with cd
openldap-2.3.38 (substituting your version of OpenLDAP as appropriate).

At this point, you're in the source directory. You must now configure the build
environment for your system and then build the software. OpenLDAP uses a script
called configure that performs these actions. Type ./configure --help to see
all the options available to you. Some define where the files are installed to (such as
--prefix); others define the OpenLDAP features you wish to build. Listing 1 lists
the features and their defaults.

Listing 1. Configuration options relating to OpenLDAP features

SLAPD (Standalone LDAP Daemon) Options:
--enable-slapd enable building slapd [yes]

--enable-aci enable per-object ACIs (experimental) [no]
--enable-cleartext enable cleartext passwords [yes]

developerWorks® ibm.com/developerWorks

Installation and development
Page 4 of 21 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

--enable-crypt enable crypt(3) passwords [no]
--enable-lmpasswd enable LAN Manager passwords [no]
--enable-spasswd enable (Cyrus) SASL password verification [no]
--enable-modules enable dynamic module support [no]
--enable-rewrite enable DN rewriting in back-ldap and rwm overlay [auto]
--enable-rlookups enable reverse lookups of client hostnames [no]
--enable-slapi enable SLAPI support (experimental) [no]
--enable-slp enable SLPv2 support [no]
--enable-wrappers enable tcp wrapper support [no]

SLAPD Backend Options:
--enable-backends enable all available backends no|yes|mod
--enable-bdb enable Berkeley DB backend no|yes|mod [yes]
--enable-dnssrv enable dnssrv backend no|yes|mod [no]
--enable-hdb enable Hierarchical DB backend no|yes|mod [yes]
--enable-ldap enable ldap backend no|yes|mod [no]
--enable-ldbm enable ldbm backend no|yes|mod [no]
--enable-ldbm-api use LDBM API auto|berkeley|bcompat|mdbm|gdbm [auto]
--enable-ldbm-type use LDBM type auto|btree|hash [auto]

--enable-meta enable metadirectory backend no|yes|mod [no]
--enable-monitor enable monitor backend no|yes|mod [yes]
--enable-null enable null backend no|yes|mod [no]
--enable-passwd enable passwd backend no|yes|mod [no]
--enable-perl enable perl backend no|yes|mod [no]
--enable-relay enable relay backend no|yes|mod [yes]
--enable-shell enable shell backend no|yes|mod [no]
--enable-sql enable sql backend no|yes|mod [no]

SLAPD Overlay Options:
--enable-overlays enable all available overlays no|yes|mod
--enable-accesslog In-Directory Access Logging overlay no|yes|mod [no]
--enable-auditlog Audit Logging overlay no|yes|mod [no]
--enable-denyop Deny Operation overlay no|yes|mod [no]
--enable-dyngroup Dynamic Group overlay no|yes|mod [no]
--enable-dynlist Dynamic List overlay no|yes|mod [no]
--enable-lastmod Last Modification overlay no|yes|mod [no]
--enable-ppolicy Password Policy overlay no|yes|mod [no]
--enable-proxycache Proxy Cache overlay no|yes|mod [no]
--enable-refint Referential Integrity overlay no|yes|mod [no]
--enable-retcode Return Code testing overlay no|yes|mod [no]
--enable-rwm Rewrite/Remap overlay no|yes|mod [no]
--enable-syncprov Syncrepl Provider overlay no|yes|mod [yes]
--enable-translucent Translucent Proxy overlay no|yes|mod [no]
--enable-unique Attribute Uniqueness overlay no|yes|mod [no]
--enable-valsort Value Sorting overlay no|yes|mod [no]

SLURPD (Replication Daemon) Options:
--enable-slurpd enable building slurpd [auto]

Optional Packages:
--with-PACKAGE[=ARG] use PACKAGE [ARG=yes]
--without-PACKAGE do not use PACKAGE (same as --with-PACKAGE=no)
--with-subdir=DIR change default subdirectory used for installs
--with-cyrus-sasl with Cyrus SASL support [auto]
--with-fetch with fetch(3) URL support [auto]
--with-threads with threads [auto]
--with-tls with TLS/SSL support [auto]
--with-yielding-select with implicitly yielding select [auto]
--with-odbc with specific ODBC support iodbc|unixodbc|auto [auto]

--with-gnu-ld assume the C compiler uses GNU ld [default=no]
--with-pic try to use only PIC/non-PIC objects [default=use

both]
--with-tags[=TAGS]

include additional configurations [automatic]

In Listing 1, you can see that many features are disabled by default, such as
metadirectories and modules. In addition, many options are marked as "auto," which
turns on features if the proper libraries are present on your system. Instead of relying
on this automatic behavior, it's best to make a list of the required features and

ibm.com/developerWorks developerWorks®

Installation and development
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 5 of 21

http://www.ibm.com/legal/copytrade.shtml

enable them. If you're missing any libraries, you'll get an error to this effect at
compile time, rather than some time later.

Some configuration options can be passed either no, yes, or mod. no disables the
option, yes causes the option to be statically linked to the final binary, and mod
builds the option as a separate shared library. Shared libraries are loaded into the
server at runtime (see "Server parameters (global)" below). By default, the modules
are statically linked; that is, they are part of the binary and inseparable. If you wish to
use dynamic modules, you will also need the --enable-modules option. The
benefits of dynamic modules are that you can test various options without bloating
your binary, and you can package the modules separately.

Listing 2 shows a configuration line, based on the configuration that ships in Fedora
7, that enables many helpful features. For the most part, the chosen options will
enable features that will be required in later tutorials, such as
--enable-slurpdand --enable-multimaster for replication, and
--enable-meta for meta-directories. Other options enable various backends, such
as ldab, bdb, null, and monitor.

Listing 2. A sample build configuration

./configure --enable-plugins --enable-modules --enable-slapd --enable-slurpd \
--enable-multimaster --enable-bdb --enable-hdb --enable-ldap --enable-ldbm \
--enable-ldbm-api=berkeley --enable-meta --enable-monitor --enable-null \
--enable-shell --enable-sql=mod --disable-perl \
--with-kerberos=k5only --enable-overlays=mod --prefix=/tmp/openldap

Listing 2 enables plug-ins and multiple backends, including Structured Query
Language (SQL) based backends and Berkeley Database files. Backends are
OpenLDAP's way of storing and retrieving data, and are examined in more detail
under "Backends and databases," and in later tutorials.

Listing 2 also builds both the stand-alone daemon slapd and the replication
daemon slurpd. Overlays, which allow easier customization of the backend data,
are also enabled for testing. Because this is a test setup, the installation prefix has
been changed to /tmp/openldap, so the resulting binaries end up in
/tmp/openldap/libexec.

When you execute the configure script, it checks for the necessary libraries and
then generates the build environment. If configure completes successfully,
compile OpenLDAP with make depend; make.

After the code has compiled, you can install OpenLDAP with make install. This
copies all the binaries, manpages, and libraries to their place in /tmp/openldap.

Installing from packages

If you were daunted by the previous section on compiling from source, you aren't
alone. Compiling from source is time consuming and can be aggravating if you don't
have the proper development libraries available. If your C development experience
is limited or nonexistent, then you'll likely have trouble interpreting any build errors.

developerWorks® ibm.com/developerWorks

Installation and development
Page 6 of 21 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Fortunately, most distributions package OpenLDAP as a set of binaries with a preset
configuration. Usually these binaries have all the features you'll ever need.

RPM-based distributions

Fedora and CentOS use the yum tool to install RedHat packages (RPMs) from
repositories. To find out which packages are available, use the yum list
command, passing an optional regular expression that filters the list of packages
returned. Listing 3 shows a search for all packages containing the term openldap.

Listing 3. Determining which packages are available through yum

yum list *openldap*
Loading "installonlyn" plugin
Setting up repositories
Reading repository metadata in from local files
Installed Packages
openldap.i386 2.3.30-2.fc6 installed
openldap-clients.i386 2.3.30-2.fc6 installed
openldap-devel.i386 2.3.30-2.fc6 installed
openldap-servers.i386 2.3.30-2.fc6 installed
openldap-servers-sql.i386 2.3.30-2.fc6 installed
Available Packages
compat-openldap.i386 2.3.30_2.229-2.fc6 updates

In a large application such as OpenLDAP, the client and server tools are often split
into two separate packages. In addition, you may find some compatibility libraries (to
ensure applications linked against much older versions of the software still work). To
install a package, use yum install with the name of the package, such as yum
install openldap-clients openldap-servers; this downloads and installs
both the client and server packages, along with any needed dependencies.

For Red Hat Enterprise Linux, the command to search packages for openldap is
up2date --showall | grep openldap. To install a package, supply the
package names as arguments to up2date, such as up2date
openldap-clients openldap-servers.

To make sure the OpenLDAP server starts on boot, use chkconfig ldap on.

Debian-based distributions

Debian-based distributions, such as Ubuntu, use the Advanced Packaging (APT)
tools to install packages. First, to search for OpenLDAP packages, use apt-cache
search openldap, as shown in Listing 4.

Listing 4. Listing the available OpenLDAP packages in Ubuntu Linux

notroot@ubuntu:~$ apt-cache search openldap
libldap2 - OpenLDAP libraries
libldap2-dev - OpenLDAP development libraries
python-ldap - A LDAP interface module for Python. [dummy package]
python-ldap-doc - Documentation for the Python LDAP interface module
python2.4-ldap - A LDAP interface module for Python 2.4
ldap-utils - OpenLDAP utilities

ibm.com/developerWorks developerWorks®

Installation and development
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 7 of 21

http://www.ibm.com/legal/copytrade.shtml

libldap-2.2-7 - OpenLDAP libraries
slapd - OpenLDAP server (slapd)

Listing 4 shows several packages available. The slapd package provides the
server, and any dependencies will be resolved at install time. Run sudo apt-get
install slapd to install the server. You may also include the ldap-utils
package, which contains the command-line clients.

Configuring the software

Once you've installed OpenLDAP, you must configure it. For testing purposes, you
need to specify only a few things; but for the real world (and the LPIC 3 exam), you
must be well acquainted with the various options.

Two configuration files govern the behavior of OpenLDAP; both are in /etc/openldap/
by default. The first is ldap.conf, which controls the global behavior of LDAP clients.
The configuration file for all LDAP servers is called slapd.conf. Despite the name,
slapd.conf also has the configuration for slurpd, the replication daemon. The focus
of this article is on slapd.conf, specifically pertaining to the slapd daemon.

slapd.conf has an easy format: a single keyword followed by one or more
arguments, subject to the following conditions:

• The keyword must start at column 0—that is, no spaces may exist in front
of it.

• If an argument has spaces in it, the argument must be quoted with double
quotes ("").

• If a line begins with a space, it's considered a continuation of the previous
line.

• Keywords aren't case sensitive, but the arguments may be, depending on
which keyword is used.

As with most UNIX® tools, the hash symbol (#) denotes a comment. Anything after
the hash is ignored.

slapd.conf is divided into two sections: global options and backend database
options. Although this ordering isn't enforced, you must be careful where you place
your directives, because some directives alter the context in which subsequent
directives are processed. For instance, if no backend or database keywords have
been encountered, an option is considered global. Once a database directive is
read, all further options apply to that database. This continues until another
database directive is read, at which point the next commands apply to the new
database.

Some of the global options will be covered in later tutorials in this 301 series, such
as those dealing with access controls and replication. A description of the commonly

developerWorks® ibm.com/developerWorks

Installation and development
Page 8 of 21 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

used configuration directives follows.

Server parameters (global)

Several parameters limit the work that the slapd process can do, which prevents
resource starvation. conn_max_pending accepts an integer that dictates how
many anonymous requests can be pending at any given time. You'll learn about
binding to the LDAP server in a later tutorial in this 301 series; simply put, you can
make requests from the server by logging in as a user (an authenticated session) or
without any credentials (anonymous session). Requests beyond the
conn_max_pending limit are dropped by the server. Similarly,
conn_max_pending_auth is the same as conn_max_pending but refers to
authenticated sessions.

The idletimeout parameter (specified in seconds) tells slapd how long idle
clients can be held before they should be disconnected. If this number is 0, no
disconnections happen.

The sizelimit parameter limits the number of search results that can come back
from a single query, and timelimit limits how long the server spends searching.
These two parameters can take either an integer, the keyword unlimited, or more
complex hard and soft limits. This would allow you to set a default (soft) timeout or
result-set size; but if a client requests a larger number of rows or a longer timeout, it
can be accommodated up to the hard limit. For example, sizelimit
sizesoft=400 size.hard=1000 specifies that by default, 400 rows are
returned. Clients can request that this limit be increased up to 1,000. This format can
be applied to groups of users so that some people or applications can perform large
searches, and others can perform only small searches

When a client performs a search on the tree, it usually specifies a node (called the
search base, or base) from which the search should start—the Distinguished Names
(DNs) of all the results have the search base in them. This allows for faster
searching (because fewer nodes need to be searched) and easier client
implementation (because searching only part of a tree is a simple but effective filter).
If the client doesn't specify a base, the value of defaultsearchbase is used. This
is a good parameter to set to avoid surprises with misconfigured clients down the
road. Depending on the layout of your LDAP tree, you may wish to use either your
users container or the root of the tree. (Trees and distinguished names are covered
in the previous tutorial.)

Three commands govern various features supported by your server, such as legacy
support and security requirements by clients. These commands are allow,
disallow, and require. Each command takes a series of whitespace keywords
that enable, disable, or require a feature. The keywords are shown in Table 3.

Table 3. Keywords used with allow, disallow, and require
Command(s) Keyword Description Default

allow bind_v2 If set, allows legacy
LDAPv2 clients to
connect. The

Disallowed

ibm.com/developerWorks developerWorks®

Installation and development
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 9 of 21

http://www.ibm.com/developerworks/linux/edu/l-dw-linux-lpic3301-i.html
http://www.ibm.com/legal/copytrade.shtml

OpenLDAP
documentation
repeatedly points out
that OpenLDAP
doesn't truly support
LDAPv2, so some
requests may result
in unexpected
behavior.

allow bind_anon_cred Allows a client to
bind with a password
but no DN. If this
option is allowed,
then the client is
allowed as an
anonymous bind.

Disallowed

allow bind_anon_dn Allows a client to
bind with a DN but
no password, usually
because the client is
misconfigured. If this
option is allowed,
then the client is
allowed as an
anonymous bind.

Disallowed

allow, disallow update_anon Allows an
anonymous bind,
which happens when
a client connects to
the LDAP server with
no DN or password.

Allowed

disallow bind_simple Allows simple
(unencrypted user
names and
passwords)
authentication as
opposed to a
stronger method
such as Simple
Authentication and
Security Layer
(SASL).

Allowed

require bind Requires that the
client bind to the
directory with the
bind operation
before doing any
other operations.

Not required

require LDAPv3 Determines whether
LDAPv3 is required.
Note that this can
conflict with allow
bind_v2.

Not required

require authc Requires
authentication, as

Not required

developerWorks® ibm.com/developerWorks

Installation and development
Page 10 of 21 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

opposed to an
anonymous bind.

require SASL Requires that a
SASL method be
used to connect to
the server

Not required

require strong Requires that a
strong method of
authentication be
used. This can be
either SASL or
simple authentication
over a protected
method.

Not required

require none This option clears out
all the requirements,
usually if you're
relaxing the
requirements for a
certain database by
using this command
in the database
section of slapd.conf.
If you wish to change
the requirements for
the database (as
opposed to just
clearing the list), you
must use none
before adding your
new requirements,
even if they have
been required in the
global section.

Not applicable

Even though certain types of login may be allowed by some commands from Table
3, the connections are still subject to access controls. For example, an anonymous
bind may be granted read-only access to part of the tree. The nature of your
application and the capabilities of your clients dictate how you allow or disallow
various authentication methods.

If you wish to maintain a higher level of availability, then enable gentlehup. With
this command enabled, slapd stops listening on the network when it receives a
SIGHUP signal, but it doesn't drop any open connections. A new instance of slapd
can then be started, usually with an updated configuration.

To get more verbose logging, adjust the value of loglevel. This command accepts
an integer, multiple integers, or a series of keywords, which enable logging for a
particular function. Consult the slapd.conf manpage for the full list of keywords and
values. For example, connection tracing has a value of 8 and a keyword of conns,
and synchronization has a value of 4096 and a keyword of sync. To enable logging
of these two items logging 5004, logging 8 4096, or logging conns sync
will achieve the same result.

ibm.com/developerWorks developerWorks®

Installation and development
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 11 of 21

http://www.ibm.com/legal/copytrade.shtml

If you compiled OpenLDAP from source, you may have enabled some modules.
Alternatively, you may have downloaded extra modules from your package
manager, such as the openldap-server-sql package, which includes the SQL
backend module. The modulepath and moduleload options are used to load
dynamic modules into slapd. modulepath specifies the directory (or list of
directories) that contains the shared libraries, and each instance of moduleload
specifies a module to load. It's not necessary to specify the module's version number
or extension, because slapd looks for a shared library. For example, for a library
called back_sql-2.3.so.0.2.18, use moduleload back_sql. Alternatively,
moduleload can be given the full path (without the version and extension) to the
library, such as moduleload /usr/share/openldap/back_sql.

Some scripts expect the process id of a process to be held in a certain file. pidfile
tells slapd where to write its process id.

Schema parameters

A handful of commands let you add schema items to your tree, either by including a
schema file or by defining the object in slapd.conf. Recall from the previous tutorial
that the schema provides the attributes and object classes that can be used by your
LDAP tree.

To add a new schema file to your server, use the include command followed by
the full path to the schema file (usually found in /etc/openldap/schema). If one
schema makes reference to another (such as inetOrgPerson inheriting from
organizationalPerson), you need to include all the necessary files in the proper
order, with the base objects included first. OpenLDAP parses each schema file as
it's included, so order of inclusion is important.

You can add new schema items directly through slapd.conf with the
attributetype and objectclass commands for attributes and object classes,
respectively. This is the same as putting the information in a schema file and
including it with the include command. Similarly, you can define object identifiers
(OIDs) with objectidentifier.

Backends and databases

Backends and databases are two separate but closely related concepts. A database
represents part of a tree, such as dc=ertw,dc=com. A backend describes the
method by which slapd retrieves the data. (The dc=ertw,dc=com tree has been
the primary example in this series.)

In many cases, the backend is a file on disk (in some format; more on this later); or it
can be a method to get data from another source, from a SQL database, to DNS,
and even through a script. Each database is handled by one backend, and the same
backend type can be used by multiple databases.

As noted earlier, slapd.conf starts with global directives. Backend mode then starts
at the first instance of the backend directive. All directives in this backed mode
apply to the particular backend being configured. Any options that were set globally

developerWorks® ibm.com/developerWorks

Installation and development
Page 12 of 21 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/developerworks/linux/edu/l-dw-linux-lpic3301-i.html
http://www.ibm.com/legal/copytrade.shtml

apply to the backend, unless they're overridden at the backend level. Similarly, you
configure databases with the database keyword. A database is tied to a backend
type, which inherits any global or backend level configurations. You can override any
options at the database level, too.

OpenLDAP splits the backends into three types:

1. Those that store data:

• bdb—Uses the Berkeley database engine (such as Sleepycat, now
owned by Oracle)

• hdb—An improvement on back-ldb, which adds some indexing
improvements

2. Those that proxy data:

• ldap—Proxies another LDAP server

• meta—Proxies several LDAP servers for different parts of the tree

• sql—Returns data from a SQL database

3. Those that generate data:

• dnssrv—Returns LDAP referrals based on data in DNS SRV records

• monitor—Returns statistics from the LDAP server

• null—A testing module; returns nothing

• passwd—Returns data from the password file

• perl—Returns data generated from a Perl script

• shell—Returns data generated from a shell script

Configuration options are specific to each backend, and can be found in the relevant
manpage (such as slapd-bdb for the bdb backend).

Databases represent the tree and its data. The dc=ertw,dc=com tree is an
example of a database. All data under this DN would be stored in a similar fashion if
it were part of the same database. It's also possible to have
ou=people,dc=ertw,dc=com in one database, with anything else under
dc=ertw,dc=com in another. Finally, an LDAP server can serve more than one
tree, such as dc=ertw,dc=com and dc=lpi,dc=org. Each database has its own
way of handling the request by way of its own backend.

Specify database followed by the database type to start database configuration
mode. The commonly used form is the Berkeley database, so database bdb
creates a BDB database. The next command you need is suffix, which specifies
the root of the tree the database is serving.

rootdn and rootpw allow you to specify a user with all privileges (a root user) for

ibm.com/developerWorks developerWorks®

Installation and development
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 13 of 21

http://www.ibm.com/legal/copytrade.shtml

the database. This user isn't even subject to access controls. The rootdn should be
within the specified suffix and may or may not have a password. If a rootpw is
specified, this is used. Otherwise, the behavior is to look for the rootdn's record in
the tree and authenticate against the userPassword attribute. If no root user is
specified, then all users are subject to the access controls configured.

If you specify lastmod on, OpenLDAP keeps several hidden attributes (called
operational attributes), such as the name of the person who created the record and
when it was modified. Some of these attributes are required for replication to work,
so it's smart to leave lastmod enabled (which is the default). These operational
attributes aren't shown to clients unless specifically requested.

You can further restrict what can be done to the database through the restrict
command. This command takes parameters corresponding to LDAP operations,
such as add, bind, compare, delete, rename, and search. To block users from
deleting nodes in the tree, use restrict delete. If the tree contains users, but
for some reason you don't want them to be able to bind to the tree, use restrict
bind. Additionally, read and write are available to block any reading and writing
to the tree, respectively, rather than having to spell out all the relevant operations.
Alternatively, you can use the command readonly to make the database read only.

Different parts of the same tree can be handled by different databases. If properly
configured, OpenLDAP glues all the parts together. The database containing the
other is called the superior database; the database being contained is the
subordinate database. First, define the subordinate database and add the
subordinate command on a line of its own. Then, define the superior database.
With this configuration, OpenLDAP can treat multiple databases as one, with some
data stored locally and some pulled from other sources (a special case of this is
when all the data is on remote LDAP servers, which is where a metadirectory is
used). Note that if you define the superior database before the subordinate
database, you'll get errors that you're trying to redefine part of your tree. Listing 5
shows the dc=ertw,dc=com tree split into a superior and a subordinate database.

Listing 5. Configuration for a subordinate and superior database

Subordinate
database bdb
suffix "ou=people,dc=ertw, dc=com"
rootdn "cn=Sean Walberg,ou=people,dc=ertw,dc=com"
rootpw mysecret
directory /var/db/openldap/ertw-com-people
subordinate

Superior
database bdb
suffix "dc=ertw, dc=com"
rootdn "cn=Sean Walberg,dc=ertw,dc=com"
rootpw mysecret
directory /var/db/openldap/ertw-com

Also note that two rootdns are configured. If you want to define a password, the
rootdn must fall within the database. To build the tree, the second root account
must be used to define the dc=ertw,dc=com entry, and the first root account

developerWorks® ibm.com/developerWorks

Installation and development
Page 14 of 21 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

defines the people organizational unit (OU) and any objects underneath it. Once
users have been added, you can authenticate as a different user in order to get
access to the whole tree.

If you're using the bdb backend, you also need to use the directory command to
specify where the database files are stored. Each database instance needs a
separate directory.

Setting up a new database is fairly simple, because there are only a few commands
to worry about. Much of the complexity comes in when you try to tune the backend,
which is the subject of the next tutorial in this 301 series.

Overlays

Overlays are an extension of the database. If you want to add a feature to a
database, you can often add it as an overlay rather than forking the database code.
For example, if you want all writes to be logged to a file, you can attach the
auditlog overlay to the relevant database.

Overlays operate as a stack. After configuring the database, you specify one or
more databases. Then, define each overlay with the overlay command, followed
by the name of the overlay. Each overlay has its own configuration parameters.

If you've configured multiple overlays, they're run in the reverse order that you define
them. The database is accessed only after all the overlays have run. After the
database returns the data, the overlays are run again in the same order before
slapd returns the data to the client.

At each step, an overlay can perform an action such as logging, it can modify the
request or response, or it can stop processing.

Section 3. Developing for LDAP with Perl/C++

This section covers material for topic 302.2 for the Senior Level Linux Professional
(LPIC-3) exam 301. This topic has a weight of 1.

In this section, learn how to:

• Use Perl's Net::LDAP module

• Write Perl scripts to bind, search, and modify directories

• Develop in C/C++

Although OpenLDAP includes command-line clients, it's often helpful to use LDAP
information in your own scripts. Perl is a popular language for scripting. Perl has a
module called Net::LDAP that is used to connect to and use an LDAP server.

ibm.com/developerWorks developerWorks®

Installation and development
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 15 of 21

http://www.ibm.com/legal/copytrade.shtml

Getting started

Net::LDAP doesn't ship with Perl, but your distribution may include it as a package.
See "Installing from packages" for more information on searching for and installing
packages.

If your distribution doesn't have the Net::LDAP package, then you can download it
from the Comprehensive Perl Archive Network (CPAN). As root, run perl -MCPAN
-e "install Net::LDAP", which downloads and installs Net::LDAP and any
dependencies.

Using Net::LDAP

Using Net::LDAP is fairly simple:

1. Create a new Net::LDAP object.

2. Bind to the desired server.

3. Perform your LDAP operations.

Create a new object

In typical Perl fashion, you must create an instance of the Net::LDAP module
through the new method. All further operations will be on this instance. new requires,
at a minimum, the name of the server you want to connect to. For example:

my $ldap = Net::LDAP->new('localhost') or die "$@";

Here, a new Net::LDAP object is created with the new method and is passed the
string localhost. The result is assigned to the $ldap variable. If the function fails,
the program exits and prints an error message describing the problem. $@ is a Perl
internal variable that contains the status of the last operation.

You can proceed to perform LDAP operations with the new Net::LDAP object.
Each function returns a Net::LDAP::Message object that contains the status of
the operation, any error messages, and any data returned from the server.

Binding to the tree

The first operation you should do is to log in or bind to the tree. Listing 6 shows a
bind operation and associated error checking.

Listing 6. Perl code to bind to the tree

my $message = $ldap->bind(
"cn=Sean Walberg,ou=people,dc=ertw,dc=com",
password=>"test");

developerWorks® ibm.com/developerWorks

Installation and development
Page 16 of 21 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

if ($message->code() != 0) {
die $message->error();

}

Listing 6 starts by calling the bind method of the previously created object. The first
parameter to the function is the DN you're binding as. If you don't specify a DN, you
bind anonymously. Further parameters are in the format of key=>value; the one
you'll use most often is the password.

Each Net::LDAP method returns a Net::LDAP::Message object, which has the
results of the function. The error code is retrieved through the code method. A code
of 0 means success, so the code in Listing 6 exits the program with the error
message if the result isn't 0. Note that the error is retrieved from $message->error
rather than $@, like the earlier example. This is because the error isn't a Perl error;
it's internal to Net::LDAP.

Once the bind is successful, you can do anything you want, subject to the server's
access controls. To log out, call the unbind method.

Searching the tree

Searching is done through the search method. Like the bind method, you must
pass some parameters and check the result of your query. However, the returned
object now contains your data, so this must be parsed. With the search operation,
the result is a Net::LDAP::Search object, which inherits all the methods from
Net::LDAP::Message (such as code and error) and adds methods to help you
parse the data. Listing 7 shows a search of the tree.

Listing 7. Searching the tree with search

$message = $ldap->search(base => "dc=ertw,dc=com", filter=> "(objectClass=*)");
if ($message->code() != 0) {

print $message->error();
} else {

foreach my $entry ($message->entries()) {
print $entry->dn() . ": ";
print join ", ", $entry->get_value("objectClass");
print "\n";

}
}

Listing 7 begins by calling the search method, passing two parameters: the base
and a filter. The base tells the server where in the tree to begin searching. A
complementary option, scope, tells the server how far to search:

• base —Only the base object

• one —Only the children of the base object (and not the base object itself)

• sub —The base object and all its children (the default)

The filter is a string describing the objects you're interested in. You can search on
attributes and perform complex AND/OR queries. objectClass=* returns any

ibm.com/developerWorks developerWorks®

Installation and development
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 17 of 21

http://www.ibm.com/legal/copytrade.shtml

object.

The result of the search is checked, and an error is printed if a problem happened.
Because the script could still recover from an error, it just prints the error and
continues, rather than exiting.

The entries function returns an array of Net::LDAP::Entry objects, each with a
single result. First the entry's DN is printed, and then all the object classes. If you'd
rather have a text version of the whole record, the dump method prints the entire
entry in text format.

Adding a new entry

You add an entry to the tree through the add method. You must pass the function
the DN of the entry you wish to add, along with the attributes. The attributes are an
array of key => value pairs. The value can also be an array in the case of multiple
instances of the same attribute. Listing 8 shows an entry being added to the tree.

Listing 8. Adding an entry using Net::LDAP

$message = $ldap->add(
"cn=Fred Flintstone,ou=people,dc=ertw,dc=com",
attr => [

cn => "Fred Flintstone",
sn => "Flintstone",
objectclass => ["organizationalPerson",

"inetOrgPerson"],
]

);

if ($message->code() != 0) {
print $message->error();

}

The first parameter to add is either the DN or a Net::LDAP::Entry object. If the
DN is passed, you must pass an arrayref through the attr method. Even though
the key => value format is used as in a hashref, Net::LDAP is expecting an
arrayref, so be careful!

More about Net::LDAP

Net::LDAP provides an interface to all the LDAP functions, such as compare,
delete, and moddn. They're all used similarly to the previous examples and are
fully documented in the Net::LDAP manpage.

All the examples shown operate in blocking mode, which means the function returns
after the response has been received from the server. You can also operate in
asynchronous mode, which involves giving a callback function that is called as
packets are received.

By using Net::LDAP, you can use the data stored in your LDAP tree from within
your scripts. Perl is already used in a wide variety of software, so the opportunities
for integration are unlimited.

developerWorks® ibm.com/developerWorks

Installation and development
Page 18 of 21 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Developing in C/C++

Using the C libraries is more involved than the Perl libraries. The ldap(3) manpage
contains a detailed description of how to use the library, and has pointers to the
other manpages describing each function. To use the LDAP C libraries, your code
must first include the ldap.h include file, such as with #include <ldap.h>. Your
object files must then be linked with libldap using the -lldap option to the linker.

Section 4. Summary

In this tutorial, you learned about installing and configuring the OpenLDAP
stand-alone server. When configuring slapd, use the slapd.conf file. You must take
care to keep your global options at the top of the file and then progress to backend
and database configurations, because slapd is dependent on the order of the
directives. When in doubt, consult the slapd.conf manpage.

Perl code can make use of an LDAP server through the Net::LDAP module. First
you create an object, and then you call methods of the object that correspond with
the LDAP operation you want. Generally, you first bind and then perform your
queries. It's important to check the results of your functions through the code and
error functions.

ibm.com/developerWorks developerWorks®

Installation and development
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 19 of 21

http://www.ibm.com/legal/copytrade.shtml

Resources

Learn

• Review the previous tutorial in this 301 series, "LPI exam 301 prep, Topic 301:
Concepts, architecture, and design" (developerWorks, October 2007).

• Take the developerWorks tutorial "Linux Installation and Package Management"
(developerWorks, September 2005) to brush up on your package management
commands.

• Review the entire LPI exam prep tutorial series on developerWorks to learn
Linux fundamentals and prepare for system administrator certification.

• At the LPIC Program, find task lists, sample questions, and detailed objectives
for the three levels of the Linux Professional Institute's Linux system
administration certification.

• Find answers to What is a backend? and What is a database? in the
OpenLDAP FAQ.

• Learn more about building overlays in the developer's documentation. Overlays
are a complex but powerful concept.

• Consult the OpenLDAP Administrator's Guide if the manpages for slapd.conf or
your particular backend don't help. You might also find the OpenLDAP FAQ to
be helpful.

• The online book LDAP for Rocket Scientists is excellent, despite being a work in
progress.

• The Perl-LDAP page has lots of documentation and advice on using
Net::LDAP.

• In the developerWorks Linux zone, find more resources for Linux developers,
and scan our most popular articles and tutorials.

• See all Linux tips and Linux tutorials on developerWorks.

• Stay current with developerWorks technical events and Webcasts.

Get products and technologies

• Download OpenLDAP.

• The IBM Tivoli Directory Server is a competing LDAP server that integrates well
with other IBM products.

• phpLDAPadmin is a Web-based LDAP administration tool. If the GUI is more
your style, Luma is a good one to look at.

• Order the SEK for Linux, a two-DVD set containing the latest IBM trial software
for Linux from DB2®, Lotus®, Rational®, Tivoli®, and WebSphere®.

• With IBM trial software, available for download directly from developerWorks,
build your next development project on Linux.

developerWorks® ibm.com/developerWorks

Installation and development
Page 20 of 21 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/developerworks/linux/edu/l-dw-linux-lpic3301-i.html
http://www.ibm.com/developerworks/linux/edu/l-dw-linux-lpic3301-i.html
http://www.ibm.com/developerworks/edu/l-dw-linux-lpic1102-i.html
http://www.ibm.com/developerworks/linux/lpi/
http://www.lpi.org/en/lpi/english/certification/the_lpic_program
http://www.openldap.org/faq/data/cache/1085.html
http://www.openldap.org/faq/data/cache/1086.html
http://www.openldap.org/devel/cvsweb.cgi/~checkout~/servers/slapd/overlays/slapover.txt?rev=1.2&hideattic=1&sortbydate=0
http://www.openldap.org/doc/admin23/index.html
http://www.openldap.org/faq/data/cache/1.html
http://www.zytrax.com/books/ldap/
http://ldap.perl.org/
http://www.ibm.com/developerworks/linux/
http://www.ibm.com/developerworks/linux/library/l-top-10.html
http://www.ibm.com/developerworks/views/linux/libraryview.jsp?topic_by=All+topics+and+related+products&sort_order=desc&lcl_sort_order=desc&search_by=linux+tip%3A&search_flag=true&type_by=All+Types&show_abstract=true&start_no=1&sort_by=Date&end_no=100&show_all=false
http://www.ibm.com/developerworks/views/linux/libraryview.jsp?topic_by=All+topics+and+related+products&sort_order=desc&lcl_sort_order=desc&search_by=&search_flag=&type_by=Tutorials&show_abstract=true&sort_by=Date&end_no=100&show_all=false
http://www.ibm.com/developerworks/offers/techbriefings/
http://www.openldap.org/software/download/
http://www-306.ibm.com/software/tivoli/products/directory-server/
http://phpldapadmin.sourceforge.net/
http://luma.sourceforge.net/
http://www.ibm.com/developerworks/offers/sek/
http://www.ibm.com/developerworks/downloads/
http://www.ibm.com/legal/copytrade.shtml

Discuss

• Get involved in the developerWorks community through blogs, forums,
podcasts, and community topics in our new developerWorks spaces.

About the author

Sean Walberg
Sean Walberg has been working with Linux and UNIX since 1994 in academic,
corporate, and Internet service provider environments. He has written extensively
about systems administration over the past several years.

Trademarks

DB2, Lotus, Rational, Tivoli, and WebSphere are trademarks of IBM Corporation in
the United States, other countries, or both.
Linux is a trademark of Linus Torvalds in the United States, other countries, or both.
UNIX is a registered trademark of The Open Group in the United States and other
countries.
Microsoft and Windows are trademarks of Microsoft Corporation in the United States,
other countries, or both.

ibm.com/developerWorks developerWorks®

Installation and development
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 21 of 21

http://www.ibm.com/developerworks/community
http://www.ibm.com/developerworks/spaces/
http://www.ibm.com/legal/copytrade.shtml

	Table of Contents
	Before you start
	About this series
	About this tutorial
	Objectives
	Prerequisites
	System requirements

	Compiling and installing OpenLDAP
	Compiling from source
	Configuring the
 software

	Developing for LDAP with Perl/C++
	Getting started
	Using Net::LDAP
	Developing in C/C++

	Summary
	Resources
	About the author
	Trademarks

