
LPI exam 301 prep, Topic 303: Configuration
Senior Level Linux Professional (LPIC-3)

Skill Level: Intermediate

Sean A. Walberg (sean@ertw.com)
Senior Network Engineer

04 Mar 2008

In this tutorial, Sean Walberg helps you prepare to take the Linux Professional
Institute Senior Level Linux Professional (LPIC-3) exam. In this third in a series of six
tutorials, Sean walks you through configuring a Lightweight Directory Access Protocol
(LDAP) server, including access control, security, and performance. By the end of
this tutorial, you'll know about LDAP server configuration.

Section 1. Before you start

Learn what these tutorials can teach you and how you can get the most from them.

About this series

The Linux Professional Institute (LPI) certifies Linux® system administrators at three
levels: junior level (also called "certification level 1"), advanced level (also called
"certification level 2"), and senior level (also called "certification level 3"). To attain
certification level 1, you must pass exams 101 and 102. To attain certification level
2, you must pass exams 201 and 202. To attain certification level 3, you must have
an active advanced-level certification and pass exam 301 ("core"). You may also
need to pass additional specialty exams at the senior level.

developerWorks offers tutorials to help you prepare for the five junior, advanced, and
senior certification exams. Each exam covers several topics, and each topic has a
corresponding self-study tutorial on developerWorks. Table 1 lists the six topics and

Configuration
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 1 of 36

mailto:sean@ertw.com
http://www.ibm.com/developerworks/views/linux/libraryview.jsp?end_no=100&lcl_sort_order=asc&type_by=All+Types&sort_order=asc&show_all=false&sort_by=Title&search_by=lpi+301&topic_by=All+topics+and+related+products&search_flag=true&show_abstract=true
http://www.ibm.com/developerworks/views/linux/libraryview.jsp?end_no=100&lcl_sort_order=asc&type_by=All+Types&sort_order=asc&show_all=false&sort_by=Title&search_by=lpi+301&topic_by=All+topics+and+related+products&search_flag=true&show_abstract=true
http://www.lpi.org
http://www.ibm.com/legal/copytrade.shtml

corresponding developerWorks tutorials for LPI exam 301.

Table 1. LPI exam 301: Tutorials and topics
LPI exam 301 topic developerWorks tutorial Tutorial summary

Topic 301 LPI exam 301 prep:
Concepts, architecture, and
design

Learn about LDAP concepts
and architecture, how to
design and implement an
LDAP directory, and about
schemas.

Topic 302 LPI exam 301 prep:
Installation and development

Learn how to install, configure,
and use the OpenLDAP
software.

Topic 303 LPI exam 301 prep:
Configuration

(This tutorial) Lean how to
configure the OpenLDAP
software in detail. See the
detailed objectives.

Topic 304 LPI exam 301 prep:
Usage

Coming soon.

Topic 305 LPI exam 301 prep:
Integration and migration

Coming soon.

Topic 306 LPI exam 301 prep:
Capacity planning

Coming soon.

To pass exam 301 (and attain certification level 3), the following should be true:

• You should have several years of experience with installing and
maintaining Linux on a number of computers for various purposes.

• You should have integration experience with diverse technologies and
operating systems.

• You should have professional experience as, or training to be, an
enterprise-level Linux professional (including having experience as a part
of another role).

• You should know advanced and enterprise levels of Linux administration
including installation, management, security, troubleshooting, and
maintenance.

• You should be able to use open source tools to measure capacity
planning and troubleshoot resource problems.

• You should have professional experience using LDAP to integrate with
UNIX® services and Microsoft® Windows® services, including Samba,
Pluggable Authentication Modules (PAM), e-mail, and Active Directory.

• You should be able to plan, architect, design, build, and implement a full

developerWorks® ibm.com/developerWorks

Configuration
Page 2 of 36 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/developerworks/edu/l-dw-linux-lpic3301-i.html
http://www.ibm.com/developerworks/edu/l-dw-linux-lpic3301-i.html
http://www.ibm.com/developerworks/edu/l-dw-linux-lpic3301-i.html
http://www.ibm.com/developerworks/edu/l-dw-linux-lpic3302-i.html
http://www.ibm.com/developerworks/edu/l-dw-linux-lpic3302-i.html
http://www.ibm.com/legal/copytrade.shtml

environment using Samba and LDAP, as well as measure the capacity
planning and security of the services.

• You should be able create scripts in Bash or Perl or have knowledge of at
least one system programming language (such as C).

The Linux Professional Institute doesn't endorse any third-party exam preparation
material or techniques in particular.

About this tutorial

Welcome to "Configuration," the third of six tutorials designed to prepare you for LPI
exam 301. In this tutorial, you learn about LDAP server configuration, including
access controls, security, replication, and database performance.

This tutorial is organized according to the LPI objectives for this topic. Very roughly,
expect more questions on the exam for objectives with higher weights, as shown in
Table 2.

Objectives

Table 2 lists the detailed objectives for this tutorial.

Table 2. Configuration: Exam objectives covered in this tutorial
LPI exam objective Objective weight Objective summary

303.2
Access control lists in
OpenLDAP

2 Plan and implement access
control lists.

303.3
LDAP replication

5 Set up OpenLDAP to replicate
data between multiple servers.

303.4
Securing the directory

4 Configure encrypted access to
the LDAP server, and restrict
access at the firewall level.

303.5
LDAP server performance
tuning

2 Measure the performance of
your LDAP server, and tune
for maximum performance.

303.6
OpenLDAP daemon
configuration

2 Understand the basic
slapd.conf configuration
directives, and become
familiar with the basic slapd
command-line options.

ibm.com/developerWorks developerWorks®

Configuration
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 3 of 36

http://www.ibm.com/legal/copytrade.shtml

Prerequisites

To get the most from this tutorial, you should have advanced knowledge of Linux
and a working Linux system on which to practice the commands covered.

If your fundamental Linux skills are a bit rusty, you may want to first review the
tutorials for the LPIC-1 and LPIC-2 exams.

Different versions of a program may format output differently, so your results may
not look exactly like the listings and figures in this tutorial.

System requirements

To follow along with the examples in these tutorials, you need a Linux workstation
with the OpenLDAP package and support for PAM. Most modern distributions meet
these requirements.

Section 2. Access control lists in LDAP

This section covers material for topic 303.2 for the Senior Level Linux Professional
(LPIC-3) exam 301. This topic has a weight of 2.

In this section, learn how to:

• Plan LDAP access control lists

• Understand access control syntax

• Grant and revoke LDAP access permissions

A variety of data can be stored in an LDAP tree, including phone numbers, birth
dates, and payroll information. Some of these may be public, and some may be
accessible by only certain people. The same information may have different
restrictions based on the user. For example, perhaps only the owner of the record
and administrators can change a phone number, but everyone can read the number.
Access control lists (ACLs) handle the configuration of these restrictions.

Planning LDAP access control lists

developerWorks® ibm.com/developerWorks

Configuration
Page 4 of 36 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/developerworks/linux/lpi/index.html
http://www.ibm.com/legal/copytrade.shtml

Before you start writing your configuration, you should determine what you want to
achieve. Which parts of the tree contain sensitive information? Which attributes need
to be protected, and from whom? How will the tree be used?

The components of an ACL

An ACL entry supplies three pieces of information:

1. What entries and attributes the ACL specifies

2. Who the ACL applies to

3. The level of access that is granted

Regular expressions
Regular expressions are used for matching text. You may have a
general idea of what the text looks like, or know certain patterns,
and you can build a regular expression to find what you're looking
for. A regular expression, or regex for short, consists of literal
matches and meta characters that match a variety of patterns.

A simple regex is hello, which matches any string of characters
containing the pattern hello.

You may not know if the string is capitalized, so the set meta
characters, [], match one occurrence of any of the characters
inside the set. So, [Hh]ello matches both hello and Hello.

The period matches any single character. .ello matches Hello
and hello, but also fellow and cello. It doesn't, however,
match ello, because the period has to match something.

The characters ?, *, and + match zero or one of the preceding
character, zero or more of the preceding character, and one or more
of the preceding character, respectively. Thus, hello+ matches
hello and helloooooo, but not hell.

Regular expressions have many different options and allow you to
efficiently pull patterns from text files. In the context of OpenLDAP,
regular expressions are used to match parts of a DN to avoid having
to hand-code hundreds of different possibilities.

When specifying the "what" clause, you can choose to filter on the distinguished
name (DN) of the object, an LDAP-style query filter, a list of attributes, or a
combination of the three. The simplest clause allows everything, but you can get
much more restrictive. Filtering on DN lets you specify an exact match, such as
ou=People,dc=ertw,dc=com, or a regular expression (see "Regular
expressions"). The query filter can match a certain objectClass or other
attributes. The attribute list is a comma-separated list of attribute names. A more
complex matching criteria might be "All password entries under

ibm.com/developerWorks developerWorks®

Configuration
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 5 of 36

http://www.ibm.com/legal/copytrade.shtml

ou=People,dc=ertw,dc=com who are administrators."

You have a great deal of flexibility when determining who the ACL applies to. Users
are generally identified by the DN with which they bind to the tree, which is called the
bindDN. Each LDAP entry can have a userPassword attribute that is used to
authenticate that particular user. In some contexts, you can refer to the currently
logged-in user as self, which is useful for allowing a user to edit his or her own
details.

If a user doesn't bind, they're considered anonymous. By default, anonymous users
can read the tree, so you must decide if you need to change this behavior. You can
further segment your anonymous users (or any user, for that matter) by IP address
or the method used to connect (such as plaintext or encrypted).

Once you've determined the what and the who, you must determine the level of
access. Access can range from none up to write access. You may also specify that
the user can authenticate against the entry but can't read; or you can give the user
read, search, and compare access.

Regardless of how you configure your ACLs, any configured rootDN users have full
control over their database. You can't change this, except by removing the rootDN
configuration from slapd.conf.

Understanding access control syntax

The basic form of an ACL, expressed in Backus-Naur Form, is:
access to <what> [by <who> [<access>] [<control>]]+

Backus-Naur Form
Backus-Naur Form (BNF) is a way to describe grammars such as
ACL syntax. It's often used in developing Internet protocols because
BNF is terse and very precise.

In BNF notation, you have a left-hand item and a right-hand item
separated by a ::= symbol. This means the left-hand side can be
substituted by items on the right-hand side. Items on the right-hand
side that are enclosed in angle brackets (< and >) refer to another
line of BNF, with the item in the angle brackets appearing on the
left-hand side.

Items in square brackets ([and]) are optional. Vertical bars (|)
indicate "one or the other"; and + and * mean "one or more of the
preceding" and "zero or more of the preceding," respectively. Those
familiar with regular expressions will recognize many of these items.

Looking at the BNF for an ACL, an ACL entry consists of the literal
string "access to", followed by an item called "what" that is defined
somewhere else. Following that are one or more lines of the form by
<who> [<access>] [<control>], where who, access, and control
are defined elsewhere, and both access and control are optional.

developerWorks® ibm.com/developerWorks

Configuration
Page 6 of 36 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

We explore the missing grammar in the rest of this tutorial.

Describe the what

The what describes the attributes and entries that are to be enforced by the ACL.
The BNF notation to do so is shown in Listing 1.

Listing 1. BNF description of the what part of an ACL

<what> ::= * |
[dn[.<basic-style>]=<regex> | dn.<scope-style>=<DN>]
[filter=<ldapfilter>] [attrs=<attrlist>]

<basic-style> ::= regex | exact
<scope-style> ::= base | one | subtree | children
<attrlist> ::= <attr> [val[.<basic-style>]=<regex>]

| <attr> , <attrlist>
<attr> ::= <attrname> | entry | children

Some of the elements in Listing 1 aren't defined here, such as DN and regex. The
form of the distinguished name is already known, and regular expressions are best
studied outside of BNF.

Listing 1 shows that a description of the what portion of the ACL can be either the
asterisk character (*), which matches everything, or a combination of a description of
the DN, an LDAP filter, and a list of attributes. The latter possibility can use one or
more of three components, because they're individually enclosed in square brackets.

Listing 2 shows three what clauses that match the DN.

Listing 2. Three sample what clauses

dn.exact="ou=people,dc=ertw,dc=com"
dn.regex="ou=people,dc=ertw,dc=com$"
dn.regex="^cn=Sean.*,dc=com$"

The first example matches only the entry for ou=people,dc=ertw,dc=com. If this
ACL is used, it doesn't match any children such as cn=Sean
Walberg,ou=people,dc=ertw,dc=com, nor does it match the parent entry.

The second example is similar to the first, but it uses a regular expression and
anchors the search string with the dollar-sign ($) character. An anchor matches the
position of the string rather than part of the string. The dollar sign matches the end of
the string, so the second example matches anything ending in
ou=people,dc=ertw,dc=com, which includes cn=Sean
Walberg,ou=people,dc=ertw,dc=com. Note that without the anchor, the search
string could be anywhere within the target, such as

ibm.com/developerWorks developerWorks®

Configuration
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 7 of 36

http://www.ibm.com/legal/copytrade.shtml

ou=people,dc=ertw,dc=com,o=MegaCorp.

The third example from Listing 2 shows another anchor, ^, which matches the
beginning of the string. The third example also uses another regular expression, .*.
The period matches any one character, and the asterisk matches zero or more of
the preceding character. Thus, .* matches any string of zero or more characters.
Put together, the third example matches any entry starting with cn=Sean and ending
with dc=com.

You can also filter based on LDAP queries, the most helpful being a search on
objectClass. For example, a what clause of
filter=(objectClass=posixAccount) matches only entries with an
objectClass of posixAccount. For a review of objectClass, see the first
tutorial in this series, LPI exam 301 prep: Concepts, architecture, and design.

The final option for the what clause is to specify attributes. The most common usage
is to restrict who can see private attributes, especially passwords. Use
attrs=userPassword to match the password attribute.

Once you've determined what entries and attributes are to be matched, you must
then describe who the rule will apply to.

Describe the who

Access is applied to a user, based on the DN that was provided at the time the client
bound to the tree. The DN is usually found on the tree, but it could also be the
rootDN provided in slapd.conf.

Listing 3 shows the BNF for notation for the who part of the ACL.

Listing 3. BNF notation for matching the who part of an ACL

<who> ::= * | [anonymous | users | self[.<selfstyle>]
| dn[.<basic-style>]=<regex> |

dn.<scope-style>=<DN>]
[dnattr=<attrname>]

[group[/<objectclass>[/<attrname>][.<basic-style>]]=<regex>]
[peername[.<peernamestyle>]=<peername>]

[sockname[.<style>]=<sockname>]
[domain[.<domainstyle>[,<modifier>]]=<domain>]
[ssf=<n>]
[transport_ssf=<n>]
[tls_ssf=<n>]
[sasl_ssf=<n>]

<style> ::= {exact|regex|expand}
<selfstyle> ::= {level{<n>}}
<dnstyle> ::= {{exact|base(object)}|regex

|one(level)|sub(tree)|children|level{<n>}}
<groupstyle> ::= {exact|expand}
<peernamestyle> ::= {<style>|ip|path}
<domainstyle> ::= {exact|regex|sub(tree)}
<modifier> ::= ={expand}

developerWorks® ibm.com/developerWorks

Configuration
Page 8 of 36 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/developerworks/edu/l-dw-linux-lpic3301-i.html
http://www.ibm.com/legal/copytrade.shtml

As in the what part of the ACL, an asterisk matches everything. To get more specific,
you have many options. OpenLDAP defines three shortcuts named anonymous,
users, and self. These shortcuts match unregistered users, authenticated users,
and the currently logged-in user, respectively. The latter, self, is often used to
allow the logged-in user to edit components of his or her own profile. This is based
on an exact match of the DN; if you have a user's information split across different
entries, the self keyword applies only to the entry the user bound with.

An interesting thing about the self keyword is that you can also make the ACL
apply to parents or children of the user's entry with the level keyword. Using
self.level{1} matches the user's entry and the parent entry, whereas
self.level{-1} matches the user's entry and any directly attached children.

Still looking at the DN, you can perform regular-expression or exact matches with
dn.exact="DN" and dn.regex="regex", respectively. A later example will show
how to use regular expressions to dynamically tie the what and the who together.

Arbitrary entries can be protected using the dnattr keyword, which also requires
the name of an attribute. If the DN of the requester appears in the specified attribute
of the target, the ACL is matched. For example, if you add dnattr=manager to
your ACL and then add manager: cn=Joe
Blow,ou=people,dc=ertw,dc=com to Fred Smith's entry, the ACL will match
when Joe Blow accesses Fred Smith's entry.

The group keyword is similar to dnattr, except that the parameters refer to a
group defined elsewhere in the tree rather than an attribute in the entry. By default,
the group has an objectClass of groupOfNames, and the members are
referenced in the member attribute.

Use the peername, sockname, and domain keywords to match attributes of the
client connection. peername refers to the IP address of the client, such as
peernameip=127.0.0.1. sockname is for connections over named pipes, which
aren't commonly used. domain matches the hostname associated with the IP
address, which can be easily spoofed.

The final set of options refers to the Security Strength Factor (SSF) of the
connection, which is an OpenLDAP term for the connection's level of security. These
options will become clearer when you're introduced to the security mechanisms used
to connect to OpenLDAP, such as Transport Layer Security (TLS) and Simple
Authentication and Security Layer (SASL).

All of the preceding items can be used together. For example, you could allow write
access to the password field only to certain administrators coming from a certain IP
address range with a certain level of encryption. You could also do far less, such as

ibm.com/developerWorks developerWorks®

Configuration
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 9 of 36

http://www.ibm.com/legal/copytrade.shtml

requiring only a valid login, or even accepting everyone regardless of authentication.

Describe the access

Once you've determined who is accessing your tree and what they're trying to
access, you must specify what level of access they have. Listing 4 shows the BNF
notation for the access part of the ACL.

Listing 4. BNF notation describing the format of the access clause

<access> ::= [[real]self]{<level>|<priv>}
<level> ::= none|disclose|auth|compare|search|read|write
<priv> ::= {=|+|-}{w|r|s|c|x|d|0}+

When specifying access using the level format, each successive level includes the
ones before it. That is, read access gives search, compare, auth, and disclose
access. none and disclose both deny any access, except that some error
messages that might disclose information about the contents of the tree are
removed under none and allowed under disclose.

Alternatively, you can specify the level of access in terms of the LDAP operations
permitted using the priv format. The options run opposite to the level format,
such that w is for write and 0 is for none. When specifying access using the priv
format, there is no implied progression as is the case with level. If you want to
offer full access, you must do so with wrscx.

The =/+/- symbol before the letters denotes how the specified access is merged
with the current access level if multiple rules apply. With =, all previously defined
access is ignored, and the value to be used follows the equal sign. With + and -,
access is added to or subtracted from the current level, respectively.

Understand control

By default, OpenLDAP takes a first-match approach to applying access lists.
OpenLDAP finds the first ACL entry that matches the what clause and, within that
entry, finds the first entry matching the who part. This is the same as putting the
keyword stop after the access level is described. The other two options are
continue and break. If you use continue, the current ACL entry is searched for
the next line matching the who part. If you use break, processing of the current ACL
entry stops, but OpenLDAP looks for the next ACL entry matching the who clause.

Pulling together the what, who, and access

Now that you've seen the three (four, if you count control) parts of the ACL, you can
bring them together into a policy. Listing 5 shows a typical list of ACLs that allows

developerWorks® ibm.com/developerWorks

Configuration
Page 10 of 36 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

registered users to read the tree and lets users update their own passwords (but not
read them).

Listing 5. A simple ACL setup

access to attrs=userPassword
by self =xw
by anonymous auth

access to *
by self write
by users read

The first clause matches anyone trying to access the userPassword field. The user
is given write and authentication permission to their own entry, which is enforced
through the equals sign. Anonymous users are given authentication permission. A
user is anonymous as they're binding to the tree; therefore, anonymous users
require the auth permission so they may log in to be a regular, privileged user.

If the information being requested isn't the password, the second ACL entry is
consulted. Again, the user has full control over his or her own entry (except the
userPassword field, by virtue of the first ACL entry), whereas all authenticated
users have read access to the rest of the tree.

Listing 6 shows an ACL entry that uses regular expressions to tie the what and who
clauses together.

Listing 6. Getting fancy with regular expressions

access to dn.regex="cn=([^,]+),ou=addressbook,dc=ertw,dc=com"
by dn.regex="cn=$1,ou=People,dc=ertw,dc=com" write
by users read

Listing 6 allows users to edit their corresponding records under the
ou=addressbook,dc=ertw,dc=com part of the tree. [^,]+ matches everything
up to, but not including, a comma, and the parentheses save the matched text into
$1 for the first set of parentheses, $2 for the next, and so forth up to and including
$9. The who clause reuses the name of the user to determine who can access the
entry. If the name of the user is the same as that of the entry being accessed, then
the user is given write access. Failing that, authenticated users are given read
access.

Practical considerations

It's wise to keep the more specific ACL entries at the top of the list because of the
first-match behavior; otherwise, it's more likely that a previous ACL will cause the

ibm.com/developerWorks developerWorks®

Configuration
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 11 of 36

http://www.ibm.com/legal/copytrade.shtml

one lower down the list to be ignored. This technique can also be used to grant and
revoke access to a particular user. Simply put your specific ACL clause at the top of
the list.

Keep your ACLs as simple as possible. Doing so reduces the possibility of error and
also improves performance. ACLs must be parsed each time an operation is carried
out against the tree.

Section 3. LDAP replication

This section covers material for topic 303.3 for the Senior Level Linux Professional
(LPIC-3) exam 301. This topic has a weight of 5.

In this section, you learn how to do the following:

• Understand replication concepts

• Configure OpenLDAP replication

• Execute and manage slurpd

• Analyze replication log files

• Understand replica hubs

• Configure LDAP referrals

• Configure LDAP sync replication

At some point, your needs may extend beyond one server. Your organization may
rely on LDAP to the extent that the loss of your LDAP server is unacceptable, or
your query volume may be high enough that you have to split your queries across
multiple servers. It could even be a combination of both; but in any case, you need
to use more than one server.

With multiple servers, you can partition your tree across different servers, but this
leads to a decrease in reliability -- not to mention that it may be difficult to properly
balance your queries. Ideally, each server has an identical copy of the tree. Any
writes are propagated to the other servers in a timely fashion so that all the other
servers are up to date. This is called replication.

This scenario, called multi-master, is complex because the data has no clear single
owner. Most often, a master-slave relationship is formed, where one server takes on
all the writes and sends them to the slaves. LDAP queries can be made against any

developerWorks® ibm.com/developerWorks

Configuration
Page 12 of 36 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

server. This can be extended to the replica hub scenario, where a single slave
server replicates data from the master and, in turn, replicates data to several other
slaves.

OpenLDAP provides two methods to achieve replication. The first is through slurpd,
a separate daemon that watches for changes on the master and pushes the
changes to the slaves. The second is using slapd's LDAP sync replication engine,
otherwise known as syncrepl. The slurpd method is now considered obsolete;
people are urged to use syncrepl instead. Both these methods are investigated in
this section.

slurpd-based replication

Slurpd-based replication is a push replication in that the master pushes any changes
to the slaves. If a client attempts to update a slave, the slave is configured to send a
referral back to the client, pointing the client to the master. The client is responsible
for reissuing the request to the master. Slurpd is a standalone daemon that is
configured from slapd.conf.

Data flow within the slurpd replication model

The master server is the server that handles all the writes from the clients and holds
the authoritative source of data. Any changes to the master's tree are written to a
replication log, which is monitored by slurpd. slurpd pushes the changes to all the
slaves upon noticing a change in the replication log.

Figure 1 shows the typical behavior of slurpd.

Figure 1. Data flow in the slurpd replication model

ibm.com/developerWorks developerWorks®

Configuration
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 13 of 36

http://www.ibm.com/legal/copytrade.shtml

The process is as follows:

1. The client sends an update request, which happens to be received by a
slave.

2. The slave knows that writes can only come from its replication partner,
and therefore it sends a referral back the client, pointing it to the master
server.

3. The client reissues the update request to the master.

4. The master performs the update and writes the change to the replication
log

5. slurpd, also running on the master, notices the change in the replication
log.

6. slurpd sends the change to the slave.

In this way, slaves can be kept up to date with the master with little lag. If any
interruptions happen, or an error occurs on a slave, slurpd always knows which
slaves need which updates.

Configure slurpd

developerWorks® ibm.com/developerWorks

Configuration
Page 14 of 36 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Configuring slurpd-based replication require the following steps:

1. Create a replica account that slurpd will use to authenticate against the
slave replica.

2. Configure the master server with the name of the slave.

3. Configure the slave to be a replica, including any needed ACLs.

4. Copy the database from the mater to the slave.

Creating the replica is straightforward; the only requirement is that the account must
have a password in the userPassword attribute. You may use the
inetOrgPerson objectClass like most accounts belonging to people, or you can
use a more generic objectClass such as account with the
simpleSecurityObject auxiliary objectClass added. Recall from the first
tutorial that structural objectClasses define the entry (and therefore you may use
only one per entry), whereas auxiliary objectClasses add attributes to any entry
regardless of the structural objectClass. Listing 7 shows the LDIF code to add a
replica account.

Listing 7. LDIF code for a replica account

dn: uid=replica1,dc=ertw,dc=com
uid: replica1
userPassword: replica1
description: Account for replication to slave1
objectClass: simpleSecurityObject
objectClass: account

Listing 7 shows a sparse entry -- just a username, password, and description, which
is adequate for replication. The description is optional, but it's recommended for
documentation. Remember the password; you'll need it in the next step!

The master must now be configured to store all changes in a replication log, and a
replica must be configured for slurpd to work. It's important to remember that slurpd
reads its configuration from slapd.conf, and that slurpd pushes the updates to the
slaves. This will help you remember where to configure replication and that the
authentication credentials belong on the master. The slave can validate the
credentials because the account is part of the tree. Listing 8 shows the configuration
on the master to enable replication.

Listing 8. Configuration of master for slurpd replication

replica uri=ldap://slaveserver.ertw.com
suffix="dc=ertw,dc=com"
binddn="uid=replica1,dc=ertw,dc=com"

ibm.com/developerWorks developerWorks®

Configuration
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 15 of 36

http://www.ibm.com/legal/copytrade.shtml

credentials="replica1"
bindmethod=simple

replogfile /var/tmp/replicationlog

Configuration of replication happens in database mode, so be sure to have the
replica command somewhere after your first database configuration. The
replica takes several parameters of the form key=value. The uri key specifies
the name or IP address of the slave in uniform resource identifier (URI) format,
effectively the name of the slave prepended with ldap://.

After specifying the name of the slave, you can optionally configure the name of the
database to replicate through the suffix option. By default, all databases are
replicated. The final requirement is to provide authentication information so that
slurpd can connect to the specified uri. For simple authentication, the binddn,
bindmethod, and credentials (the userPassword you assigned earlier) are all
you need.

The final piece of the puzzle is to tell slapd where to store its replication log. You
need to provide a full path because relative filenames don't work. Don't worry about
creating the file, because slapd will create it for you; but the path you specify must
be writable by the user slapd and slurpd are running as.

On the slave server, you must configure the replication account and also tell the
slave that it should return a referral back to the master for any writes. Listing 9
shows this configuration.

Listing 9. Configuration for the slave

updatedn uid=replica1,dc=ertw,dc=com
updateref ldap://masterserver.ertw.com

The updatedn refers back to the account you created earlier on the master that
slurpd will use to push the updates to the slaves. The updateref is another LDAP
URI, this one pointing to the master. Listing 10 shows a client trying to update the
slave after the previous configuration has been loaded, and receiving a referral.

Listing 10. A client receiving a referral after trying to update a slave

[root@slave openldap]# ldapadd -x -D cn=root,dc=ertw,dc=com -w mypass -f
newaccount.ldif
adding new entry "cn=David Walberg,ou=people,dc=ertw,dc=com"
ldap_add: Referral (10)

referrals:
ldap://masterserver.ertw.com/cn=David%20Walberg,ou=People,dc=ertw,dc=com

The OpenLDAP command-line clients don't follow referrals, but other LDAP libraries

developerWorks® ibm.com/developerWorks

Configuration
Page 16 of 36 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

do. If you're using LDAP in a replicated environment, you should verify that your
applications follow referrals correctly.

The final piece of the puzzle is to make sure the master and slave start with identical
databases. To do so, follow these steps:

1. Shut down the master server.

2. Shut down the slave server.

3. Copy all the database files from the master to the slave.

4. Start both the master and the slave servers.

5. Start up slurpd.

Both servers must be shut down to copy the database, to ensure that no changes
are made and that all data has been written to disk. It's vital that both servers start
with the same data set; otherwise they may get out of sync later. slurpd-based
replication essentially plays back all the transactions on the slave that happened on
the master, so any differences can cause problems.

slurpd may automatically start up with slapd, depending on your distribution and
start-up scripts. If it hasn't started automatically, start it by running slurpd at the
command line.

At this point, replication should be running. Create an account on your master, and
test. Also test that your slave sends back referrals if you try to update it.

Monitor replication

Understanding how to monitor replication is important because errors can happen
that may cause data to get out of synchronization. The same skills in monitoring also
help in debugging.

slurpd stores its own files in /var/lib/ldap/replica (this is separate from the replication
log that is produced by slapd). In this directory are slurpd's own replication logs and
any reject files. If slurpd tries to send an update to a slave that fails, the data is
stored in a file named after the slave, with an extension of .rej. Inside the file is the
LDIF code making up the entry along with the error returned by the slave, such as
ERROR: Already exists. Listing 11 shows the contents of a .rej file with a
different error.

Listing 11. A replication rejection file

ERROR: Invalid DN syntax: invalid DN

ibm.com/developerWorks developerWorks®

Configuration
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 17 of 36

http://www.ibm.com/legal/copytrade.shtml

replica: slaveserver.ertw.com:389
time: 1203798375.0
dn: sendmailMTAKey=testing,ou=aliases,dc=ertw,dc=com
changetype: add
objectClass: sendmailMTAAliasObject
sendmailMTAAliasGrouping: aliases
sendmailMTACluster: external
sendmailMTAKey: testing
sendmailMTAAliasValue: testinglist@ertw.com
structuralObjectClass: sendmailMTAAliasObject
entryUUID: 5375b66c-7699-102c-822b-fbf5b7bc4860
creatorsName: cn=root,dc=ertw,dc=com
createTimestamp: 20080223202615Z
entryCSN: 20080223202615Z#000000#00#000000
modifiersName: cn=root,dc=ertw,dc=com
modifyTimestamp: 20080223202615Z

The rejection file in Listing 11 starts with a text error ("ERROR: Invalid DN syntax:
invalid DN"), and the rest looks like LDIF. Note the first attribute is replica, which is
the name of the replica that couldn't process the update, and the second attribute,
time, is the time the error occurred (in UNIX timestamp format). The next few
attributes come from the entry that was rejected.

The last 7 attributes are called operational attributes. They weren't part of the
original change, but were added by the LDAP server for internal tracking. A
universally unique identifier (UUID) was given to the entry, along with some
information on when and who changed the record.

In Listing 11, the error most likely comes from a missing schema on the slave. The
slave doesn't understand what the sendmailMTAKey attribute is, therefore the DN
of the entry is invalid. The slave must have its schema updated before replication
can continue.

To fix a rejected entry, you must evaluate the error and fix the underlying problem
with the tree. Once you know the rejected entry will apply cleanly, use slurpd's
one-shot mode to apply the update with slurpd -r /path/to/rejection.rej
-o. The -r parameter tells slurpd to read from the given replication log, and -o
causes slurpd to use one-shot mode, meaning it exits after processing the log
instead of the default behavior of waiting for more entries to be added to the log.

If replication isn't working at all, the best approach is to start with the master and
work your way to the slave. First, kill slurpd and make a change to the tree. Then,
check to see if the replication log is growing; if it isn't, the master is set up
incorrectly. Next, start up slurpd, and pass -d 255 on the command line. This
traces slurpd's actions as it processes the logs. Look for errors, especially related to
opening files and access controls.

Finally, on the slave, use loglevel auth sync to check for any errors when
replication is happening (slapd logs to syslog with the local4 facility, so you may
need to add local4.* /var/log/slapd.log to /etc/syslog.conf).

developerWorks® ibm.com/developerWorks

Configuration
Page 18 of 36 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

LDAP Sync replication

slurpd is a straightforward solution to the replication problem, but it has several
shortcomings. Shutting down your master server so that you can synchronize a
slave is inconvenient at best, and at worst it can affect service. The push
architecture of slurpd can also be limiting. slurpd worked well for its time, but
something better had to be created. RFC 4533 outlines the LDAP Content
Synchronization Operation, which is implemented in OpenLDAP by the LDAP Sync
replication engine, otherwise known as syncrepl.

syncrepl is built as an overlay that is inserted between the core of slapd and the
backend database. All writes to the tree are tracked by the syncrepl engine rather
than requiring a separate server instance. Other than the mechanics of the
replication and the roles (described next), the concepts are similar to slurpd. Writes
to a replica are refused, with a referral passed back to the master server.

syncrepl is initiated from the slave, which is now given the name consumer. The
master role is called provider. In syncrepl, the consumer connects to the provider to
get updates to the tree. In the most basic mode, called refreshOnly, the consumer
receives all the changed entries since its last refresh, requests a cookie that keeps
track of the last synchronized change, and then disconnects. On the next
connection, the cookie is presented to the provider, which sends only the entries that
changed since the last synchronization.

Another syncrepl mode, called refreshAndPersist, starts off like the refreshOnly
operation; but instead of disconnecting, the consumer stays connected to receive
any updates Any changes that happen after the initial refresh are immediately sent
over the connection to the consumer by the provider.

Configure syncrepl

Listing 12 shows the provider's configuration for both syncrepl modes (refreshOnly
and refreshAndPersist).

Listing 12. Provider configuration for syncrepl

overlay syncprov
syncprov-checkpoint 100 10
syncprov-sessionlog 100

The first line of Listing 12 enables the syncprov overlay. Overlays must be
configured against a database; therefore, this configuration must go after your
database configuration line. The next two lines are optional, but they improve
reliability. syncprov-checkpoint 100 10 tells the server to store the value of
contextCSN to disk every 100 write operations or every 10 minutes. contextCSN

ibm.com/developerWorks developerWorks®

Configuration
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 19 of 36

http://www.ibm.com/legal/copytrade.shtml

is part of the cookie mentioned earlier that helps consumers pick up where they left
off after the last replication cycle. syncprov-sessionlog 100 logs write
operations to disk, which again helps in the refresh cycle.

More details about configuring the provider are found in the slapo-syncprov(5)
manpage.

Listing 13 shows the consumer side of the replication pair.

Listing 13. Consumer configuration for syncrepl in refreshOnly mode

updateref ldap://masterserver.ertw.com
syncrepl rid=1
provider=ldap://masterserver.ertw.com
type=refreshOnly
interval=00:01:00:00
searchbase="dc=ertw,dc=com"
bindmethod=simple
binddn="uid=replica1,dc=ertw,dc=com"
credentials=replica1

Like the replica command from the slurpd configuration, the syncrepl command
requires an updateref, information about the tree you're trying to replicate, and the
authentication credentials you're going to use. This time, the credentials go on the
consumer side and require enough access on the provider to read the part of the
tree being replicated. The updates to the database on the consumer are run as the
rootdn.

Items in Listing 13 specific to syncrepl are the rid, provider, type, and
interval. The rid identifies this consumer to the master. The consumer must
have a unique ID between 1 and 999. The provider is an LDAP URI pointing back
to the provider. type specifies that you only want periodic synchronization through
refreshOnly, and the interval is every hour. The interval is specified in
DD:hh:mm:ss format.

Start the consumer with an empty database, and it will replicate its data from the
provider and update every hour.

Making the transition to refreshAndPersist mode is simple. In Listing 13, remove the
interval, and change the type to refreshAndPersist

syncrepl Filtering

It's worth noting that you don't have to replicate the whole LDAP tree. You can use
the following commands to filter the data that is replicated.

Table 3. Commands for filtering replication traffic
Command Description

developerWorks® ibm.com/developerWorks

Configuration
Page 20 of 36 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

searchbase A DN pointing to the node in the tree
where replication will start. OpenLDAP
will fill in any necessary parent nodes
to make the tree complete.

scope One of sub, one, or base. This
determines how far down the tree,
starting at the searchbase, that data
is replicated. The default is sub, which
covers the searchbase and all
children

filter A LDAP search filter, such as
(objectClass=inetOrgPerson)
that controls which records are
replicated.

attrs A list of attributes that will be copied
over from the selected entries.

Like the other options for syncrepl, these options are entered in the form of
key=value

Section 4.

This section covers material for topic 303.4 for the Senior Level Linux Professional
(LPIC-3) exam 301. This topic has a weight of 4.

In this section, you learn how to do the following:

• Secure the directory with SSL and TLS

• Configure and generate client / server certificates

• Understand firewall considerations

• Configure unauthenticated access methods

• Configure User / password authentication methods

Up to this point, all access to slapd has been over unencrypted channels using
cleartext passwords. This is called simple authentication. This section looks at
adding encryption to the client-server connection.

Use SSL and TLS to secure communications

ibm.com/developerWorks developerWorks®

Configuration
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 21 of 36

http://www.ibm.com/legal/copytrade.shtml

You may be familiar with Secure Sockets Layer (SSL) and Transport Layer Security
(TLS) as the protocols that secure Web transactions. Whenever you browse an https
type URI, you're using SSL or TLS. TLS is an improvement on SSLv3 and in some
cases is backward compatible to SSL. Because of their shared heritage and
compatibility, they're often referred to collectively as SSL.

SSL makes use of X.509 certificates, which are a piece of data in a standard format
that has been digitally signed by a trusted third party known as a Certificate Authority
(CA). A valid digital signature means the data that was signed hasn't been tampered
with. If the data being signed changes, even by one bit, then the signature won't
validate. Independent parties, such as the client and the server, can validate
signatures because they both start off by trusting the CA.

Within the server's certificate is information about the ownership of the server,
including its name on the Internet. Thus you can be sure you're connecting to the
right server because the name of the server you connected to exactly matches the
name in the certificate, and you've trusted the CA to validate this before signing. The
certificate also includes the server's public key, which can be used to encrypt data
such that only the holder of the secret key can decrypt it.

Public and secret keys form the basis of public key or asymmetric cryptography. It's
asymmetric because data encrypted by the public key can only be decrypted by the
secret key, and data encrypted with the secret key can only be decrypted by the
public key. For what you normally think of as encryption, such as keeping a
message secret, the first case is used. The public key is made public, and the secret
key is made secret. Because of the asymmetric behavior of the keys, the secret key
can encrypt a message, and anyone with the public key can decrypt it. This is how
digital signatures work.

After the client connects to the server and receives the server's certificate, the client
can validate that the server name is correct, which prevents a man in the middle
attack. The public key can be used to run through a protocol that ends up with the
client and server agreeing on a shared secret that no one observing the
conversation can determine. This secret is then used to encode the rest of the
conversation between the client and the server, called symmetric cryptography
because the same key both encrypts and decrypts the data. The divide between
asymmetric and symmetric cryptography exists because the latter is orders of
magnitude faster. Public key cryptography is used to authenticate and come up with
a shared secret, and then symmetric key cryptography takes over.

To apply this all to OpenLDAP, you must create a certificate for the server and then
configure the server to use it. This example uses a self-signed certificate rather than
creating a Certificate Authority, which means the final certificate has been signed by
itself. It doesn't provide the level of trust that a CA does, but it's adequate for testing.
Listing 14 shows the generation of the key.

developerWorks® ibm.com/developerWorks

Configuration
Page 22 of 36 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Listing 14. Generating the TLS key pair

[root@bob ssl]# openssl genrsa -out ldap.key 1024
Generating RSA private key, 1024 bit long modulus
.................................++++++
.........................++++++
e is 65537 (0x10001)

Listing 14 shows the key being generated with the openssl genrsa command.
The key is 1024 bits long, which is currently considered adequate for public keys
(note that using much larger values makes cryptographic operations much slower
and may confuse some clients). Next, openssl req takes the public part of the
freshly generated key pair, adds some location information, and packages the result
-- a Certificate Signing Request (CSR) -- to be signed by a CA (see Listing 15).

Listing 15. Generating the Certificate Signing Request

[root@bob ssl]# openssl req -new -key ldap.key -out ldap.csr
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a
DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [GB]:CA
State or Province Name (full name) [Berkshire]:Manitoba
Locality Name (eg, city) [Newbury]:Winnipeg
Organization Name (eg, company) [My Company Ltd]:ERTW
Organizational Unit Name (eg, section) []:Directory Services
Common Name (eg, your name or your server's hostname)
[]:masterserver.ertw.com
Email Address []:sean@ertw.com

Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:

The generated file, ldap.csr, can be sent off to a CA (along with a hefty payment) to
be signed. This is also the procedure you follow to generate a certificate for a Web
server. If you do send this off for signing, make sure all the information you've
provided is spelled correctly, that abbreviations are used only for the Country Name,
and that the Common Name exactly matches the DNS name people will use to
connect to your server.

Instead of getting a CA to sign the CSR, in this example you'll sign it yourself, as
shown in Listing 16.

Listing 16. Signing the CSR

[root@bob ssl]# openssl x509 -req -days 1095 -in ldap.csr -signkey

ibm.com/developerWorks developerWorks®

Configuration
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 23 of 36

http://www.ibm.com/legal/copytrade.shtml

ldap.key -out ldap.cert
Signature ok
subject=/C=CA/ST=Manitoba/L=Winnipeg/O=ERTW/OU=Directory Services/
CN=masterserver.ertw.com/emailAddress=sean@ertw.com

Getting Private key

Listing 16 signs the key with the openssl x509 command. Using -req tells
openssl that the input is a CSR. The validity of this certificate is 1095 days, or 3
years. Now you have ldap.key (the private key) and ldap.cert (the certificate and
public key).

Before continuing, add a line to /etc/openldap/ldap.conf containing TLS_REQCERT
allow. This tells the OpenLDAP client utilities to ignore the fact that they're seeing a
self-signed certificate. Otherwise, the default settings deny the certificate as invalid.

Getting OpenLDAP to use the new key and certificate is easy. Assuming you stored
the generated keys in /etc/openldap/ssl/, the lines in Listing 17 set up your server for
TLS connections after you restart slapd.

Listing 17. Configuring slapd for SSL

TLSCertificateFile /etc/openldap/ssl/ldap.cert
TLSCertificateKeyFile /etc/openldap/ssl/ldap.key

The commands in Listing 17 point slapd to your certificate and private key. To test
your new server, issue the ldapwhoami -v -x -Z command, which binds
anonymously to your secure port. If you receive a "success" message, then
everything is working correctly. Otherwise, the debugging information generated by
-v will point you to the cause or any errors.

You can generate a client certificate, which is optional, the same way as the server
certificate. Instead of Listing 17, use the TLS_KEY and TLS_CERT commands in
ldap.conf, which set your client key and certificate, respectively. Client certificates
are required only if you need to have the certificate itself identify the client.

Firewall considerations

LDAP uses TCP port 389, and LDAPS (LDAP over SSL) uses TCP port 636. If you
have a firewall between your servers and your clients, these ports must be allowed
through the firewall for connections to succeed. Clients always connect to servers,
and, depending on your replication strategy, servers connect to other servers.

Linux iptables

If you have an iptables-based firewall on your LDAP server, you need to modify your
rule set to allow the incoming connections. Generally, the commands in Listing 18

developerWorks® ibm.com/developerWorks

Configuration
Page 24 of 36 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

suffice.

Listing 18. Adding iptables rules to allow LDAP connections

iptables -A INPUT -p tcp --dport 389 -j ACCEPT
iptables -A INPUT -p tcp --dport 636 -j ACCEPT

Listing 18 works if your policy is simple. -A INPUT appends the rule to the INPUT
table, where all incoming packets are checked. You may have to insert these rules
at the top (use -I INPUT instead) or use your distribution's firewall tools to allow
TCP ports 389 and optionally 636 if you need LDAPS connectivity.

If you're using your Linux firewall as a router, such that the clients are attached to
another interface and the LDAP server is attached to another interface, you must
use the FORWARD chain instead of INPUT. You may also want to specify the
incoming interface with -i, such as -i eth0 to indicate that only packets coming in
eth0 will be accepted. Once a packet has been accepted, the return packets are also
accepted.

Protection through TCP Wrappers

One of the configuration options available when compiling OpenLDAP is
--enable-wrappers, which links the resulting binaries against the TCP Wrappers
libraries. The wrappers use two files, /etc/hosts.allow and /etc/hosts.deny, to permit
or deny access to incoming clients.

First check to see if slapd uses TCP Wrappers with ldd /usr/sbin/slapd |
grep libwrap. If anything is returned, then your binary is using TCP Wrappers. If
not, you need to recompile with --enable-wrappers or use the iptables method
shown earlier.

With wrappers support, you can deny everybody access by adding slapd: ALL in
/etc/hosts.deny. You can then allow people in with slapd:
192.168.1.,127.0.0.1, which lets anyone from the 192.168.1.0/24 network or
the localhost connect. Note that connections denied through TCP Wrappers connect
at first but are then disconnected automatically. Contrast this to a firewall, where the
packet is dropped before it reaches slapd.

The format of hosts.allow and hosts.deny allows for many different ways to allow
and deny connections; consult the hosts_access(5) manpage for all the details.

More on authentication

So far, the discussion of authentication has been limited to cleartext passwords
defined in slapd.conf and simple authentication used between the client and the

ibm.com/developerWorks developerWorks®

Configuration
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 25 of 36

http://www.ibm.com/legal/copytrade.shtml

server. Cleartext passwords can be solved with slappasswd. Enter slappasswd
at the shell, and you're prompted for a password and then to verify that password.
The output is a secure hash of the password, such as
{SSHA}oxmMsm9Ff/xVQ6zv+bgmMQjCUFL5x22+. This hash is mathematically
guaranteed not to be reversible, although given the hash, someone could guess
repeatedly by trying various passwords and seeing if the hash is the same.

You've already experienced the anonymous bind, where no username or password
has been provided, and the authenticated bind, where both the username and
password are provided and valid. OpenLDAP also supports an unauthenticated bind,
where the username is provided with no password. An unauthenticated bind is
usually disabled unless you have allow bind_anon_cred in your configuration. If
allowed, an unauthenticated bind is considered anonymous.

The alternative to simple authentication is Simple Authentication and Security Layer
(SASL), a framework for providing a plug-in architecture for authentication and
encryption methods. A detailed look at SASL will appear in a forthcoming tutorial; in
the meantime, SASL allows for different authentication methods from plaintext to
Kerberos.

Earlier, when investigating ACLs, this tutorial mentioned that access can be
influenced by the connection method. This is called the Security Strength Factor
(SSF). An unencrypted session has an SSF of 0, and an encrypted session
generally has an SSF corresponding to the key length. Thus, you can require an
encrypted session for a particular ACL by adding ssf=1 to the who clause of your
ACL.

Section 5. LDAP server performance tuning

This section covers material for topic 303.5 for the Senior Level Linux Professional
(LPIC-3) exam 301. This topic has a weight of 2.

In this section, you learn how to do the following:

• Measure LDAP performance

• Tune software configuration to increase performance

• Understand indexes

OpenLDAP is a database. You provide it with a query or a task to run, and it finds
the data and returns it to you. In order to do so as fast as possible, you must assign

developerWorks® ibm.com/developerWorks

Configuration
Page 26 of 36 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

resources to the places they will be best used, such as caching of frequently
accessed data, and indexing databases.

Measure performance

Before you can try to make slapd run faster, you must be able to measure the
current state. This may mean timing a certain operation in your application and
looking for an improvement. It may also mean performing several queries yourself
and calculating the average. The metric may not even be time based; it may be to
reduce disk load on the LDAP server because the current configuration is causing
too many reads and writes.

Either way, it's helpful to take several measurements of different metrics before and
after any changes. Helpful commands are as follows:

• vmstat to show input/output (IO) statistics and CPU usage, notably the
user time and wait time

• iostat to show more details about reads and writes to disk, along with
the disk controller usage

• ps to show memory usage of the slapd process (not that using more
memory is a bad thing, but it's important to make sure you don't run out of
RAM)

• time for timing various command-line operations

Tune the daemon

Tuning always involves tradeoffs. Often, you increase the amount of resources
(usually memory or disk) to a process to get the process to respond faster. Doing so
decreases the resources that other processes can use. Similarly, if you make your
process run faster, it often consumes more resources, such as CPU cycles or disk
IO, that are unavailable to other processes.

Tradeoffs can also occur at the application level. By sacrificing some write
performance, you're often able to drastically improve read performance You can also
make your application run faster by turning off various safety features such as
transaction logging. Should you have a crash, you may end up restoring your
database from a backup, but only you know if this is an acceptable tradeoff.

Most people use the Berkeley Database (BDB) backend. This backend is based on
the Sleepycat Berkeley Database, now owned by Oracle, which is a fast embedded
database. It doesn't support a query language; instead, it's based on hash-table
lookups. Tuning this backend occurs in two places: one in slapd.conf and another in

ibm.com/developerWorks developerWorks®

Configuration
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 27 of 36

http://www.ibm.com/legal/copytrade.shtml

a special file used by the BDB runtime.

slapd.conf configuration directives

The BDB database is linked against the binary that uses it, rather than being a
standalone server like most SQL servers. As such, the application using the BDB
database is responsible for some of the behavior of the database. The slapd-bdb(5)
manpage describes all the directives that are controllable by slapd through
slapd.conf; this tutorial covers only the most important.

Like many SQL backends, BDB databases write their changes to a transaction log to
ensure reliability in the case of a failure; they also keep data in memory to save on
disk writes. The operation that flushes all the in-memory data to disk and writes the
transaction log out is called a checkpoint. The checkpoint command tells slapd
how often to write out the data, in terms of kbytes of stored changes and minutes
since the last checkpoint. Adding checkpoint 128 15 to slapd.conf means that
data will be flushed every 128KB of changes or at least every 15 minutes. By
default, no checkpoint operations are performed which is the same as checkpoint
0 0.

Recently accessed entries can be cached in RAM for faster access. By default, 1000
entries are cached. To change this number, use cachesize along with the number
of entries. The higher the cachesize, the more likely an entry is to be cached in
RAM, but the more RAM is consumed by the slapd process. Your choice of value
here depends on how many different entries are in your tree and the pattern of
access. Make sure you have enough space in the cache to hold your commonly
accessed items, such as the user list.

Similar to cachesize is idlcachesize, which has to do with how big the memory
cache for indexes is. Your setting will depend on how many indexes you have
configured (discussed later), but it's wise to start by making idlcachesize the
same as cachesize.

Tune the BDB databases

As mentioned earlier, some of the tuning parameters for the BDB databases are
handled in a separate file that is read by the BDB runtime and ignored by slapd. This
file is called DB_CONFIG, and it lives in the same directory as your database. The
most important parameter in that file is set_cachesize, which sets the internal
BDB cache size, not the slapd entry cache. The format is set_cachesize
<GigaBytes> <Bytes> <Segments;>, where GigaBytes and Bytes refer to the
size of the cache (the two are added together), and Segments allows you to split the
cache across separate memory blocks to get around 32-bit address limitations (both
0 and 1 have the same effect, allowing only a single memory segment). For a 1GB
cache, use set_cachesize 1 0 0.

developerWorks® ibm.com/developerWorks

Configuration
Page 28 of 36 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

To determine the best BDB cache size, it's often easiest to look at the cache
statistics of a working system and increase as needed. The command to look at the
memory usage statistics of a BDB database is db_stat -h /path/to/database
-m. The first 20 lines show the relevant details. If you have a high number of pages
forced from the cache, or the number of pages found in the cache is low (< 95%),
consider increasing the BDB cache size. On some distributions, db_stat may be
called slapd_db_stat to separate it from the system BDB libraries and tools.

In addition to cache, you need to make sure the transaction logs are monitored. Set
the path to the transaction logs with set_lg_dir. If you can put the transaction log
on a different set of disk spindles than the database, you'll have much better
performance.

Even though BDB is a simple database, it still needs to be able to lock files for
writing. The default settings for the number of locks is usually large enough, but you
should monitor the output of db_stat -h /path/to/database -c for any
mention of hitting the maximum number of locks. In BDB, locks are split into three
types (and reported separately): lockers, locks, and lock objects The difference
between them isn't important, but the maximum number of each is controlled through
set_lk_max_lockers, set_lk_max_locks, and set_lk_max_objects,
respectively.

Whenever you make changes to DB_CONFIG, you must restart slapd. Listing 19
shows a sample DB_CONFIG file based on the directives mentioned previously.

Listing 19. Sample DB_CONFIG file

256K cache
set_cachesize 0 268435456 0
set_lg_dir /var/log/openldap
set_lk_max_lockers 1000
set_lk_max_locks 1000
set_lk_max_objects 1000

Index your database

Most LDAP operations involve some sort of search on an attribute, such as a
username, a phone number, or an email address. Without anything to help it, slapd
must search each entry when performing a query. Adding an index to an attribute
creates a file that lets slapd search much more quickly because the data in an index
is stored in a way that allows for fast lookups. The tradeoff for an index is slower
write speed and increased disk and memory usage. Therefore, it's best to index
attributes that are searched on frequently.

OpenLDAP supports several index types, depending on the type of search being
performed. The index types are listed in Table 4.

ibm.com/developerWorks developerWorks®

Configuration
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 29 of 36

http://www.ibm.com/legal/copytrade.shtml

Table 4. OpenLDAP index types
Type keyword Description Search example

Presence pres Used for lookups
that want to know
whether an
attribute exists.

uid=*

Equality eq Used for lookups
that are looking for
a specific value.

uid=42

Substring sub Used for lookups
that are looking for
a string
somewhere within
a value. Within this
type, you can
specify three other
optimized types or
use the generic
sub type.

cn=Sean*

subinitial A substring index
looking for a string
at the beginning of
a value.

cn=Sean*

subany A substring index
looking for a string
in the middle of a
value.

cn=*jone*

subfinal A substring index
looking for a string
at the end of a
value.

cn=*Smith

Approximate approx Used for
sound-alike
searches, where
you want to find a
value that sounds
like your search
string.

cn~=Jason

To apply an index to an attribute, use the syntax index [attrlist] [indices],
where [attrlist] is a comma-separated list of the attributes and [indices] is a
comma-separated list of the index types from Table 4 You may have several index
lines. Specifying default as the attribute list sets the type of indexes that are used
when the list of indexes is empty. Consider the indexes defined in Listing 20.

Listing 20. A sample set of indexes

developerWorks® ibm.com/developerWorks

Configuration
Page 30 of 36 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

index default eq,sub
index entryUUID,objectClass eq
index cn,sn,mail eq,sub,subinitial,subany,subfinal
index userid,telephonenumber
index ou eq

Listing 20 first defines the default indexes as an equality and a basic substring
match. The second line places an equality index on the entryUUID attribute (good
for syncrepl performance) and the objectClass attribute (a common search). Line
3 places an equality index and all substring indexes on the cn, sn, and mail
attributes because these fields often have different wildcard searches. The userid
and telephonenumber attributes receive the default indexes because nothing
more specific was entered. Finally, the ou attribute has an equality index.

After changing your index definitions, you must rebuild the indexes by stopping slapd
and running slapindex as the ldap user (or, if you're running as root, make sure to
reassign ownership of all the files in the database directory to the ldap user after
running slapindex). Start up slapd, and your indexes are used.

Section 6.

This section covers material for topic 303.6 for the Senior Level Linux Professional
(LPIC-3) exam 301. This topic has a weight of 2.

In this section, you learn how to do the following:

• Understand slapd.conf configuration directives

• Understand slapd.conf database definitions

• Manage slapd and its command-line options

• Analyze slapd log files

The contents of slapd.conf have been largely covered earlier in this tutorial and in
the previous tutorial. Of particular interest in this section are the command-line
options and logging commands available to slapd.

Command-line options

The simplest way to start slapd is to run it without any arguments. Slapd then reads
the default configuration file, forks to the background, and disassociates from the
terminal.

ibm.com/developerWorks developerWorks®

Configuration
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 31 of 36

http://www.ibm.com/legal/copytrade.shtml

Table 5 lists some helpful command-line arguments.

Table 5. slapd command-line arguments
Argument Value Description

-d Integer Runs slapd with
extended debugging, and
causes slapd to run in the
foreground

-f Filename Specifies an alternate
configuration file

-h URL list Specifies the addresses
and ports that slapd
listens on

-s Sysloglevel Specifies the syslog
priority used for
messages

-l Integer Specifies the local syslog
facility (such as LOCAL4)
used for messages

-u Username Runs slapd as the given
user

-g Groupname Runs slapd in the given
group

The URL list allows you to bind slapd to different interfaces. For example, -h
"ldap://127.0.0.1/ ldaps:///" causes slapd to listen on TCP port 389
(unencrypted LDAP) only on the loopback, and encrypted LDAP (TCP port 636) on
all interfaces. You can even alter port numbers: for example, ldap://:5565/
causes unencrypted LDAP to run on port 5565 of all interfaces.

Understand logging

Slapd uses the Unix syslog daemon for logging. By default, all messages are sent to
the LOCAL4 facility, so you need at least local4.* /var/log/openldap.log in
syslog.conf to capture the messages to /var/log/openldap.log. The loglevel
command in slapd.conf then tells slapd what type of messages to log. Table 6 lists
the possible message types.

Table 6. slapd message logging types
Keyword Integer value Description

trace 1 Trace function calls

packet 2 Debug packet handling

args 4 Heavy trace debugging

developerWorks® ibm.com/developerWorks

Configuration
Page 32 of 36 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

(function args)

conns 8 Connection management

BER 16 Print out packets sent
and received

filter 32 Search filter processing

config 64 Configuration file
processing

ACL 128 ACL processing

stats 256 Stats log
connections/operations/results

stats2 512 Stats log entries sent

shell 1024 Print communication with
shell backends

parse 2048 Entry parsing

sync 16384 LDAPSync replication

You may use a space-separated list of keywords, integer values, or the sum of the
integer values for the loglevel keyword. For example, loglevel args ACL,
loglevel 4 128, and loglevel 132 all enable debugging of function
arguments and ACLs.

Section 7. Summary

In this tutorial, you learned about access control lists, replication, security, tuning,
and more details about general configuration.

ACLs dictate who gets what access to what set of entries and attributes. You need
to configure your ACLs using the form access to <what> [by <who> [
<access>] [<control>]]+. You can use a variety of forms, including direct
matches and regular expressions to specify the what. The who can also use
matches and regular expressions, but it can also use keywords like self, users,
and anonymous. The who clause can also look for things like the strength of the
connection or the network the user is coming from.

Replication involves keeping a remote server up to date with the primary LDAP
server. Two methods exist for replication: slurpd and syncrepl. In the slurpd model, a
separate daemon runs on the master server and pushes all changes to the slaves.
The slaves must start with a copy of the master's data; this requires downtime on the

ibm.com/developerWorks developerWorks®

Configuration
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 33 of 36

http://www.ibm.com/legal/copytrade.shtml

master. In syncrepl, the provider (master) server runs an overlay to handle the
replication tasks. The consumers (slaves) connect to the master and download any
updates. If a consumer downloads updates on a periodic basis, it's said to be in
refreshOnly mode. If the consumer downloads the updates and then stays
connected, it's in refreshAndPersist mode, and it receives updates as they happen
on the provider.

TLS and SSL let you encrypt communications between the client and server, and
even replication traffic. You must generate server keys and have them signed by a
CA for TLS to work. Regular LDAP traffic runs over TCP port 389, and encrypted
LDAP traffic runs over TCP port 636, so you must have your firewalls configured
accordingly.

Performance tuning involves assigning system resources to various caches and
buffers and applying indexes on frequently searched columns. System resources are
controlled in both the slapd.conf and DB_CONFIG files. Indexes can be equality,
substring, presence, or approximate, depending on the type of search for which
you're trying to optimize.

Most of slapd's behavior is controlled in slapd.conf, so there are only a few
command-line parameters to control the addresses and ports that slapd listens on,
the user it runs as, and some parameters about how it logs. What slapd logs is
controlled by the loglevel directive in slapd.conf.

At this point, you have the skills to install, configure, and manage a functional
OpenLDAP server, including security, replication, and performance tuning. The next
two tutorials will focus on applications of LDAP, such as integrating LDAP with
e-mail and authentication systems, and searching your tree from the command line.

developerWorks® ibm.com/developerWorks

Configuration
Page 34 of 36 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Resources

Learn

• Review the previous tutorial in this 301 series, "LPI exam 301 prep, Topic 302:
Installation and development" (developerWorks, December 2007), or all tutorials
in the 301 series.

• Review the entire LPI exam prep tutorial series on developerWorks to learn
Linux fundamentals and prepare for system administrator certification.

• At the LPIC Program, find task lists, sample questions, and detailed objectives
for the three levels of the Linux Professional Institute's Linux system
administration certification.

• Get the answer to How do I determine the proper BDB database cache size? in
the OpenLDAP FAQ.

• Read about Backus-Naur form on Wikipedia for an in-depth understanding,
including some examples. You may be familiar with BNF if you've looked into
the LDAP Data Interchange Format (LDIF) or read some of the OpenLDAP
manpages.

• The OpenLDAP Administrator's Guide has a chapter on ACLs that explains the
syntax in detail. The slapd.access(5) manpage is a good companion to the
Administrator's Guide.

• Also, see the chapters on syncrepl and slurpd replication in the OpenLDAP
Administrator's Guide. In particular, the guide has detailed descriptions of how
both replication types work.

• RFC 4533 (The Lightweight Directory Access Protocol (LDAP) Content
Synchronization Operation), spearheaded by the OpenLDAP Foundation and
IBM, describes a method to synchronize LDAP servers more effectively than
can be done with slurpd.

• LDAP for Rocket Scientists, an online book, is excellent, despite being a work in
progress.

• In the developerWorks Linux zone, find more resources for Linux developers,
and scan our most popular articles and tutorials.

• See all Linux tips and Linux tutorials on developerWorks.

• Stay current with developerWorks technical events and Webcasts.

Get products and technologies

• The Firewall Builder utility makes the task of typing in iptables rules easy; it has
a nice GUI and suite of tools to roll out updates to your firewalls.

ibm.com/developerWorks developerWorks®

Configuration
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 35 of 36

http://www.ibm.com/developerworks/linux/edu/l-dw-linux-lpic3302-i.html
http://www.ibm.com/developerworks/linux/edu/l-dw-linux-lpic3302-i.html
http://www.ibm.com/developerworks/views/linux/libraryview.jsp?end_no=100&lcl_sort_order=asc&type_by=All+Types&sort_order=asc&show_all=false&sort_by=Title&search_by=lpi+301&topic_by=All+topics+and+related+products&search_flag=true&show_abstract=true
http://www.ibm.com/developerworks/views/linux/libraryview.jsp?end_no=100&lcl_sort_order=asc&type_by=All+Types&sort_order=asc&show_all=false&sort_by=Title&search_by=lpi+301&topic_by=All+topics+and+related+products&search_flag=true&show_abstract=true
http://www.ibm.com/developerworks/views/linux/libraryview.jsp?end_no=100&lcl_sort_order=asc&type_by=All+Types&sort_order=asc&show_all=false&sort_by=Title&search_by=lpi+exam&topic_by=All+topics+and+related+products&search_flag=true&show_abstract=true
http://www.lpi.org/en/lpi/english/certification/the_lpic_program
http://www.openldap.org/faq/data/cache/1075.html
http://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form
http://www.openldap.org/doc/admin23/
http://www.openldap.org/doc/admin23/slapdconf2.html#Access%20Control
http://www.openldap.org/doc/admin23/syncrepl.html
http://www.openldap.org/doc/admin23/replication.html
http://www.openldap.org/doc/admin23/
http://www.openldap.org/doc/admin23/
http://www.rfc-editor.org/rfc/rfc4533.txt
http://www.rfc-editor.org/rfc/rfc4533.txt
http://www.zytrax.com/books/ldap/
http://www.ibm.com/developerworks/linux/
http://www.ibm.com/developerworks/linux/library/l-top-10.html
http://www.ibm.com/developerworks/views/linux/libraryview.jsp?topic_by=All+topics+and+related+products&sort_order=desc&lcl_sort_order=desc&search_by=linux+tip%3A&search_flag=true&type_by=All+Types&show_abstract=true&start_no=1&sort_by=Date&end_no=100&show_all=false
http://www.ibm.com/developerworks/views/linux/libraryview.jsp?topic_by=All+topics+and+related+products&sort_order=desc&lcl_sort_order=desc&search_by=&search_flag=&type_by=Tutorials&show_abstract=true&sort_by=Date&end_no=100&show_all=false
http://www.ibm.com/developerworks/offers/techbriefings/
http://www.fwbuilder.org/
http://www.ibm.com/legal/copytrade.shtml

• OpenLDAP is a great choice for an LDAP server.

• phpLDAPadmin is a Web-based LDAP administration tool. If the GUI is more
your style, Luma is a good one to look at.

• Order the SEK for Linux, a two-DVD set containing the latest IBM trial software
for Linux from DB2®, Lotus®, Rational®, Tivoli®, and WebSphere®.

• With IBM trial software, available for download directly from developerWorks,
build your next development project on Linux.

Discuss

• Get involved in the developerWorks community through blogs, forums,
podcasts, and community topics in our new developerWorks spaces.

About the author

Sean A. Walberg
Sean Walberg has been working with Linux and UNIX since 1994 in academic,
corporate, and Internet service provider environments. He has written extensively
about systems administration over the past several years.

Trademarks

DB2, Lotus, Rational, Tivoli, and WebSphere are trademarks of IBM Corporation in
the United States, other countries, or both.
Linux is a trademark of Linus Torvalds in the United States, other countries, or both.
UNIX is a registered trademark of The Open Group in the United States and other
countries.
Microsoft and Windows are trademarks of Microsoft Corporation in the United States,
other countries, or both.

developerWorks® ibm.com/developerWorks

Configuration
Page 36 of 36 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.openldap.org/software/download/
http://phpldapadmin.sourceforge.net/
http://luma.sourceforge.net/
http://www.ibm.com/developerworks/offers/sek/
http://www.ibm.com/developerworks/downloads/
http://www.ibm.com/developerworks/community
http://www.ibm.com/developerworks/spaces/
http://www.ibm.com/legal/copytrade.shtml

	Table of Contents
	Before you start
	About this series
	About this tutorial
	Objectives
	Prerequisites
	System requirements

	Access control lists in LDAP
	Planning LDAP access
 control lists
	Understanding access
 control syntax
	Pulling together the
 what, who, and access
	Practical
 considerations

	LDAP replication
	slurpd-based
 replication
	LDAP Sync replication

	
	Use SSL and TLS to
 secure communications
	Firewall
 considerations
	More on authentication

	LDAP server performance tuning
	Measure performance
	Tune the daemon
	Index your database

	
	Command-line options
	Understand logging

	Summary
	Resources
	About the author
	Trademarks

